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Abstract

Parallel file systems target large, high-performance storage systems. Since these storage systems

are comprised of a significant number of components (i.e., hundreds of file servers, thousands of

disks, etc.), they are expected to (and in practice do) frequently exhibit “problems”, from degraded

performance to outright failure of one or more components. The sheer number of components,

and thus, potential problems, makes manual diagnosis of these problems difficult. Of particular

concern are system-wide performance degradations, which may arise from a single misbehaving

component, and thus, pose a challenge for problem localization. Even failure of a redundant com-

ponent with a less-significant performance impact is worrisome as it may, in absence of explicit

checks, go unnoticed for some time and increase risk of system unavailability.

As a solution, this thesis defines a novel problem-diagnosis approach, capitalizing upon the

parallel-file-system design criterion of balanced performance, that peer-compares the performance

of system components to localize problems within storage systems running unmodified, “off-the-

shelf” parallel file systems. Performed in support of this thesis is a set of laboratory experiments

that demonstrate proof-of-concept of the peer-comparison approach by injecting four realistic

problems into 12-server, test-bench PVFS and Lustre clusters. This thesis is further validated

by taking the diagnosis approach and adapting it to to work on a very-large, production GPFS stor-

age system consisting of 128 file servers, 32 storage controllers, 1152 disk arrays, and 11,520 total

disks. Presented in a 15-month case study is the problems observed through analysis of 624 GB of

instrumentation data, in which a variety of performance-related storage-system problems are local-

ized and diagnosed, in a matter of hours, as compared to days or longer with manual approaches.
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Chapter 1

Introduction

Identifying and diagnosing problems, especially performance problems, is a difficult task in large-

scale storage systems. These systems are comprised of many components: tens of storage con-

trollers, hundreds of file servers, thousands of disk arrays, and tens-of-thousands of disks. Per-

formance problems can arise from different system layers, such as bugs in the application, mis-

configurations of file system or protocols, resource exhaustion, network congestion, and redundant

component failures. Often, the most interesting and trickiest problems to diagnose are not the out-

right crash (fail-stop) failures, but rather those that result in a “limping-but-alive” system (i.e., the

system continues to operate, but with degraded performance). Even where such problems may not

significantly degrade performance (e.g., a redundant disk failure), it is often essential to quickly

diagnose and repair these problems before subsequent ones result in a system crash or data loss.

Our work targets the diagnosis of such problems in parallel file systems used in high-performance

computing (HPC).

Large scientific applications consist of compute-intense behavior intermixed with periods of

intense parallel I/O, and therefore depend on storage systems that can support high-bandwidth

concurrent writes. The Parallel Virtual File System (PVFS) [11], Lustre [57], and the General

Parallel File System (GPFS) [49] are cluster and parallel file systems that are designed to utilize

and exploit parallelism across all storage system components to provide HPC applications with
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very high-bandwidth concurrent I/O. All three may be deployed in client-server architectures, with

many clients communicating with multiple I/O servers and one or more metadata servers. Each

also supports the UNIX I/O interface and allow existing UNIX I/O programs to access files without

recompilation. To facilitate parallel access to a file, parallel file systems distribute (or “stripe”) file

data across multiple disks located in multiple storage arrays and accessed by physically distinct

file servers, which balances load and performance across all system components.

An interesting class of problems in these systems is hardware component faults. Due to redun-

dancy, generally component faults and failures manifest in degraded performance. Due to careful

balancing of the number of components and their connections, the degraded performance of even

a single hardware component may be observed throughout an entire storage system, which makes

problem localization difficult.

At present, storage system problems are observed and diagnosed through independent monitor-

ing agents that exist within the individual components of a system, e.g., disks (via S.M.A.R.T. [16]),

storage controllers, and file servers. However, because these agents act independently, there is a

lack of understanding how a specific problem affects overall performance, and thus it is unclear

whether a corrective action is immediately necessary. Where the underlying problem is the mis-

configuration of a specific component, an independent monitoring agent may not even be aware

that a problem exists.

In this thesis we explore the use of peer-comparison techniques to identify and localize per-

formance problems in parallel file systems. As part of a solution to the challenge of problem

diagnosis in HPC storage systems, we define a problem-diagnosis approach that capitalizes upon

the parallel-file-system design criterion of balanced performance. This approach gathers black-box

performance metrics from system components and analyzes them to automatically localize prob-

lems within storage systems running unmodified, “off-the-shelf” parallel file systems, enabling

diagnosis of the underlying problem by the system’s operators. Central to the problem-diagnosis

strategy is the hypothesis (borne out by observations of parallel-file-system behavior) that innocent

(i.e., fault-free) storage system components follow similar trends in their (throughput and latency)

2



performance metrics, whereas a culprit component appears markedly different in comparison.

Based on this hypothesis, a statistical peer-comparison approach is developed that automatically

singles out the culprit component through the temporal correlation of histograms and other statis-

tical attributes of gathered performance data across the servers in a storage system.

Even where a performance problem affects all components in a storage system (e.g., due to

misconfigurations or software/firmware bugs present on all components of the same type) our

peer-comparison approach may be used to rule out performance problems affecting specific com-

ponents. By using our approach in conjunction with other problem diagnosis techniques (§ 7),

operators, on complaint of a performance problem, can quickly rule out hardware component fail-

ures for most of the system components and focus their search on non-peer hardware components,

system software bugs, or poorly-performing workload-I/O patterns. Thus, we envision that our

problem-diagnosis approach maybe used in conjunction with component-specific monitoring and

other approaches to provide a comprehensive solution to diagnose all classes of performance prob-

lems.

We initially demonstrate this problem-diagnosis approach with a proof-of-concept implementa-

tion of our peer-comparison algorithm that we use to automatically diagnose performance problems

injected during runs of synthetic workloads (dd, IOzone, or PostMark) on a controlled, laboratory

test-bench PVFS and Lustre storage clusters of up to 12 file servers. While this prototype demon-

strates that peer comparison is a good foundation for diagnosing problems in parallel file systems,

it does not, yet, attempt to tackle the practical challenges of diagnosis in large-scale, real-world

production systems.

We then adapt the proof-of-concept approach for the primary high-speed storage system of In-

trepid, a 40-rack Blue Gene/P supercomputer at Argonne National Laboratory [41], shown in Fig-

ure 1.1. In doing so, we tackle the practical issues in making problem diagnosis work in large-scale

environment, and we evaluate our approach through a 15-month case study of practical problems

that we observe and identify within Intrepid’s storage system.

3



Figure 1.1: Intrepid, consists of 40 Blue Gene/P racks [3].

1.1 Problem Statement

Focusing on problem localization in parallel file systems, the thesis statement is:

Through the collection and analysis of black-box, OS-level performance metrics, it is pos-

sible to automatically detect and localize (i.e., diagnose) storage system problems to the

misbehaving components most responsible for degraded parallel-file-system performance.

1.2 Hypotheses

We hypothesize that, under a performance-manifesting fault in a parallel-file-system-based stor-

age system, performance metrics should exhibit observable anomalous behavior on the culprit

components, e.g., disk arrays, storage controllers, attachments, and file server. Additionally, with

knowledge of the parallel file system design criterion of balanced performance, we hypothesize that

4
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Figure 1.2: Asymmetry in throughput for an injected fault; provides intuition behind the peer-
comparison approach that serves as a good foundation for our diagnosis.

the statistical trends of I/O performance data should (i) exhibit symmetry (albeit with inevitable

minor differences) across fault-free components, even under workload changes, and (ii) exhibit

asymmetries across the faulty (culprit) components, as compared to the fault-free components.

1.2.1 Intuition of Hypotheses

The defining property of parallel file systems is that they parallelize accesses to even a single file,

by striping its data across many, if not all, file servers and logical storage units (LUNs) within

a storage system. By striping data, parallel file systems maintain similar I/O loads across sys-

tem components (peers) for all non-pathological client workloads. Figure 1.2 illustrates the intu-

ition behind our hypothesis; the injection of a rogue workload on a spindle shared with a PVFS

LUN results in a throughput asymmetry between the faulty and fault-free LUNs, where previously

throughput was similar across them.
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In the context of our diagnosis approach, peers represent components of the same type or func-

tionality that are expected to exhibit similar request patterns. By capturing performance metrics at

each peer, and comparing these metrics across peers to locate asymmetries (peer-comparison), we

expect to be able to identify and localize faults to the culprit peer(s).

1.2.2 Validation of Hypotheses

To validate our hypothesis, we explore a peer-comparison-based approach to automatically di-

agnose performance problems through a set of fault-injection experiments on controlled PVFS

and Lustre test-bench clusters. Through these experiments, we evaluate the accuracy of our peer-

comparison algorithm with true- and false-positive rates for diagnosing the correct faulty server

and fault type (if an injected fault exists). We then further evaluate our diagnosis approach with the

instrumentation, analysis, and case study of the problems observed in a GPFS-based, large-scale,

real-world production system.

1.3 Contributions

Through the research that is embodied in this thesis, we make the following contributions:

• A low-overhead method of black-box instrumentation consisting of samples of OS-level storage

and network performance metrics.

• A peer-comparison diagnosis algorithm that is able to detect the existence of storage system

problems and localize the problems to specific, misbehaving system components.

• Outlining the pragmatic challenges of making problem diagnosis work in large-scale storage

systems.

• Adapting our diagnosis approach, from its initial proof-of-concept target of a 12-server experi-

mental cluster, to a 11,000-component, production environment consisting of file servers, stor-

age controllers, disk arrays, attachments, etc.
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• Evaluating a case study of problems observed in Intrepid’s storage system, including those that

were previously unknown to system operators.

1.4 Thesis Roadmap

The remainder of this thesis is organized as follows: We start with a model and description of

parallel file systems and the properties that make them amenable to a peer-comparison (§ 2). We

then present an overview of our problem-diagnosis approach (§ 3), as it was refined to work in the

environment of Intrepid’s storage system, to serve as a basis for discussing the evolution of our

diagnosis work.

We then describe our approach, as it was originally conceived [36], to work in a small-scale

laboratory environment. In doing so, we explore our approach’s capability to automatically diag-

nose performance problems through a set of experiments on controlled PVFS and Lustre test-bench

clusters (§ 4).

We then discuss the challenges of taking the initial algorithm from its origin in a limited, con-

trollable test-bench environment, and making it effective in a noisy, 11,000-component production

system (§ 5). After meeting these challenges, we present a case study [35], where we evaluate the

capability of our approach to localize real-world problems in Intrepid’s storage system (§ 5.6).

We then present lessons we’ve learned throughout our research (§ 6), including a few ap-

proaches that, while not part of our primary research results, did contribute to our overall under-

standing of problem diagnosis in parallel file systems. We also present other problem-diagnosis

approaches (§ 7) that my be used in conjunction with our approach for more comprehensive diag-

nosis of storage-system problems. Finally, we identify areas of future improvement and study, and

provide a conclusion of this thesis and our research (§ 8).
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Chapter 2

System Model

Although this work specifically focuses on experimentation with parallel file systems, the approach

is more broadly applicable to systems with certain characteristics, as described below.

2.1 General Class of Systems

The general class of systems where we may apply a peer-comparison approach is parallel-processing

systems, e.g., parallel file systems. These systems are comprised of nodes (e.g., disk arrays),

nominally-independent entities, each of which processes a portion of a larger data set. To apply

peer comparison, we must measure one or more metrics (e.g., throughput, latency, etc.) related to

the node’s processing of data. In order to meaningfully compare these metrics across nodes, each

portion of the data set should have the same parameters. That is, while each portion of data need

not be identical in value or content, each portion should be the same size, require a similar amount

of computational effort to process, and be evenly distributed across nodes.

Beyond the metrics alone, the knowledge of the system topology can be beneficial in enhancing

diagnosis.

From the viewpoint of processing, nodes could be considered to be independent. Thus, anoma-

lies in metrics on a particular node would lead us to suspect that node (and any of its components)

is at fault. The reality is, that, nodes can often consist of components that may be shared with
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other nodes; such sharing is often captured in the system topology. The consideration of system

topology, along with anomalies in the metrics of nodes, opens up greater possibilities for diagno-

sis. While the presence of shared components may superficially seem to confound diagnosis, it can

also prove to be an advantage when taken in conjunction with the topology of the system’s shared

components. For example, if anomalies are observed in the metrics of two distinct nodes, this may

lead us to suspect that problem originates from a component shared between those nodes.

A node’s metrics can often be observed from multiple vantage points in the system. We des-

ignate a node’s observer to be an entity that is capable of seeing and collecting metrics about that

particular node. The notion of observers can be further open possibilities for diagnosis. For ex-

ample, multiple file servers, as observers, may collect metrics about a single disk array (a node).

Differences between the metrics observed for that single node, even if not anomalous relative to

other nodes, may still indicate a problem between the node and its observer (e.g., a storage attach-

ment).

2.2 Candidate Systems: Parallel File Systems

PVFS, Lustre, and GPFS storage systems consist of multiple file servers (which function as ob-

servers in our model) that are accessed by one or more clients, as illustrated in Figure 2.1. For

large I/O operations, clients issue simultaneous requests across a local area network (e.g., Ether-

net, Myrinet, etc.) to each file server. To facilitate storage, file servers may store data on local

(e.g., SATA) disks, however, in most systems I/O requests are further forwarded to dedicated stor-

age controllers, either via direct attachments (e.g., Fibre Channel, InfiniBand) or over a storage

area network.

Storage controllers expose block-addressable logical storage units (LUNs, which function as

nodes in our model) to file servers and store file-system content. Each LUN is comprised of a disk

array, e.g., in RAID-5 or RAID-6 configurations. Controllers expose different subsets of LUNs

to each of its attached the file servers. Usually LUNs are mapped so each LUN primarily serves
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Figure 2.1: Architecture of parallel file systems.

I/O for one (primary) file server, while also allowing redundant access from other (secondary) file

servers. This enables LUNs to remain accessible to clients in the event that a small-number of file

servers go offline. Controllers themselves may also be redundant so that LUNs remain accessible

to secondary file servers in the event of a controller failure.

The defining property of parallel file systems, including PVFS, Lustre, and GPFS, is that they

parallelize accesses to even a single file, by striping its data across many (and in a common con-

figuration, across all) file servers and LUNs. For example, when performing large, sequential I/O,

clients may issue requests, corresponding to adjacent stripe segments, round-robin to each LUN in

the system. LUNs are mapped to file servers so that these requests are striped to each file server,

parallelizing access across the LAN, and further striped across the primary LUNs attached to file

servers, parallelizing access across storage attachments.

The parallelization introduced by the file system, even for sequential writes to a single file,

ensures that non-pessimistic workloads exhibit equal loads across the system, which in turn, should

be met with balanced performance. Thus, when “hot spots” and performance imbalances arise in
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a storage system, we hypothesize them to be indicative of performance problem. Furthermore,

by instrumenting each file server in the system, we can observe the performance of file servers,

storage controllers, and LUNs, from multiple perspectives, which enables us to localize problems

to the components of the system where performance imbalance is most significant.

2.2.1 PVFS

PVFS storage systems consist of one or more metadata servers and multiple I/O servers that are

accessed by one or more PVFS clients. The PVFS server consists of a single monolithic user-space

daemon that may act in either or both metadata and I/O server roles. Historically I/O and metadata

services were ran on separate servers, but recent versions of PVFS encourage running both services

on all servers to enhance performance.

PVFS clients consist of stand-alone applications that use the PVFS library (libpvfs2) or MPI

applications that use the ROMIO MPI-IO library (that supports PVFS internally) to invoke file

operations on one or more servers. PVFS can also plug in to the Linux Kernel’s VFS interface via

a kernel module that forwards the client’s syscalls (requests) to a user-space PVFS client daemon

that then invokes operations on the servers. This kernel client allows PVFS file systems to be

mounted under Linux similar to other remote file systems like NFS.

With PVFS, file-objects are distributed across all I/O servers in the system. In particular, file

data is striped across each I/O server with a default stripe size of 64 kB. For each file-object, the

first stripe segment is located on the I/O server to which the object handle is assigned. Subsequent

segments are accessed in a round-robin manner on each of the remaining I/O servers. This charac-

teristic has significant implications on PVFS’s throughput in the event of a performance problem.

2.2.2 Lustre

Lustre storage systems consist of one active metadata server which serves one metadata target

(storage space), one management server which may be colocated with the metadata server, and

multiple object storage servers which serve one or more object storage targets each. The metadata
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and object storage servers are analogous to PVFS’s metadata and I/O servers with the main dis-

tinction of only allowing for a single active metadata server per system. Unlike PVFS, the Lustre

server is implemented entirely in kernel space as a loadable kernel module. The Lustre client is

also implemented as a kernel space file-system module, and like PVFS, provides file system access

via the Linux VFS interface. A userspace client library (liblustre) is also available.

Lustre allows for the configurable striping of file data across one or more object storage targets.

By default, file data is stored on a single target. The stripe_count parameter may be set on a

per-file, directory, or file-system basis to specify the number of object storage targets that file data

is striped over. The stripe_size parameter specifies the stripe unit size and may be configured

to multiples of 64 kB, with a default of 1 MB (the maximum payload size of a Lustre RPC). The

stripe_offset parameter determines on which object storage target the first stripe segment

resides, with −1 indicating that first segments should be allocated round-robin.

2.2.3 GPFS

GPFS is a cluster and parallel file system used for both high-performance computing and network

storage applications. Like PVFS and Lustre, a GPFS storage system consists of instances that run

the GPFS software, disk arrays that store file-system content, and storage controllers that export

disk arrays as LUNs. For each LUN, the GPFS system configuration defines, in GPFS terminology,

a set of Network Shared Disk (NSD) servers to handle network (LAN) I/O requests for those LUNs.

Internally, GPFS instances regard each other as peers, with no software level distinction be-

tween “client” instances (those running applications that generate I/O) and “server” instances

(those with attached storage). When a GPFS instance issues an I/O request to an attached (di-

rect, storage network, etc.) LUN, the request is made via this attachment even if the instance is not

defined as an NSD in the system configuration. Thus, shared storage that is attached to multiple

GPFS instances may see I/O requests from all of the attached instances, regardless of their status as

NSD servers. When an I/O request is made to a non-attached LUN, the request is forwarded over

a LAN (e.g., Ethernet) to the LUN’s primary-defined NSD server. If the NSD server is unavailable

12



or communication is interrupted, the request is made to subsequent NSD servers in their defined

order.

This peer-based architecture enables deployment of a variety of cluster layouts that may even

change dynamically. In practice, a commonly deployed model is that of separate clients and

servers, where the instances (clients) that mount the file system and run applications are distinct

from instances (servers) that interact with attached storage. In the case of non-shared (instance-

exclusive) storage, all I/O requests from both clients and servers are routed through the singly-

defined NSD server for that LUN. In the case of shared storage, I/O requests from all clients and

non-attached servers are routed through the highest-priority, presently-available NSD server, and

I/O requests from attached servers are made directly via their attachments. Thus, in the client

and server model, each LUN’s workload is reflected in storage metrics entirely on a single GPFS

instance (non-shared storage), or across multiple GPFS instances (shared storage). This is the

deployment model that will be discussed in the remainder of this thesis.

2.3 Goals of Problem Diagnosis

To facilitate problem diagnosis in real-world storage systems, we recognize that our diagnosis

approach must remain “production friendly”, that is, it must minimize the burden of deploying

diagnosis tool on a system’s operators and users. With this high-level concept in mind, we identify

a number of specific goals and non-goals that influence our problem-diagnosis approach.

Goals. Our approach should exhibit:

• No software modification of the file system or other system components. Instrumentation should

consist of a small software package that can be dropped into an existing system and use already-

available instrumentation hooks.

• Minimal-overhead instrumentation that does not produce an overwhelming volume of data, does

not significantly degrade file system latency or throughput, and does not adversely impact the
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system’s operation.

• Application transparency so that user applications require no modification to enable problem

diagnosis, and so that our diagnosis algorithm requires no specific knowledge of workload be-

havior.

• Minimal false alarms of anomalies in the face of legitimate behavioral changes (e.g., workload

changes due to increased request rate).

• Coverage of problems, particularly those encountered in real-world GPFS storage systems.

Non-Goals. Our approach does not support:

• Code-level debugging. Our approach aims for coarse-grained problem diagnosis by identifying

the faulty system components (disk arrays, controllers, and servers). We currently do not aim

for fine-grained diagnosis that would trace the problem to specific file system modules.

• Pathological workloads. Our approach relies on clients exhibiting similar request to logical

storage units (LUNs). In parallel file systems, the request pattern for most workloads is similar

across all LUNs—requests are either sequential enough to be striped across all LUNs or random

enough to result in roughly uniform access. However, some workloads (e.g., overwriting the

same portion of a file repeatedly, or only writing stripe-unit-sized records to every stripe-count

offset) may make requests distributed to only a subset, possibly one, of the LUNs.

• Diagnosis of non-peers. Our approach fundamentally cannot diagnose performance problems

on non-peer components (e.g., Lustre’s single metadata server).

• Diagnosis of problems present on all peers. Our approach also cannot diagnose performance

problems that are present on all peer components, including suboptimal workload I/O patterns,

misconfigurations, file-system software bugs, or firmware bugs that are simultaneously activated

on all components of the same type. However, when a performance problem is otherwise known
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to be present (e.g., from user complaints), our approach may be used to exclude component-

specific problems so operators may focus on diagnosis using other techniques (§ 7).

2.4 Motivation: Real Problem Anecdotes

The faults we study here are motivated by the PVFS developers’ anecdotal experience [10] of

problems faced/reported in various production PVFS deployments, one of which is Argonne Na-

tional Laboratory’s 557 TFlop Blue Gene/P (BG/P) PVFS cluster. Accounts of experience with

BG/P indicate that storage/network problems account for approximately 50%/50% of performance

issues [10]. A single poorly performing server has been observed to impact the behavior of the

overall system, instead of its behavior being averaged out by that of non-faulty nodes [10]. This

makes it difficult to troubleshoot system-wide performance issues, and thus, fault localization (i.e.,

diagnosing the faulty server) is a critical first step in root-cause analysis.

Anomalous storage behavior can result from a number of causes. Aside from failing disks,

RAID controllers may scan disks during idle times to proactively search for media defects [25],

inadvertently creating disk contention that degrades the throughput of a disk array [61]. Our disk-

busy injected problem (§ 4.1) seeks to emulate this manifestation. Another possible cause of a disk-

busy problem is disk contention due to the accidental launch of a rogue processes. For example,

if two remote file servers (e.g., PVFS and GPFS) are collocated, the startup of a second server

(GPFS) might negatively impact the performance of the server already running (PVFS) [10].

Network problems primarily manifest in packet-loss errors, which is reported to be the “most

frustrating” [sic] to diagnose [10]. Packet loss is often the result of faulty switch ports that enter

a degraded state when packets can still be sent but occasionally fail CRC checks. The resulting

poor performance spreads through the rest of the network, making problem diagnosis difficult [10].

Packet loss might also be the result of an overloaded switch that “just can’t keep up” [sic]. In this

case, network diagnostic tests of individual links might exhibit no errors, and problems manifest

only while PVFS is running [10].
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Errors do not necessarily manifest identically under all workloads. For example, SANs with

large write caches can initially mask performance problems under write-intensive workloads and

thus, the problems might take a while to manifest [10]. In contrast, performance problems in

read-intensive workloads manifest rather quickly.

A consistent, but unfortunate, aspect of performance faults is that they result in a “limping-

but-alive” mode, where system throughput is drastically reduced, but the system continues to run

without errors being reported. Under such conditions, it is likely not possible to identify the faulty

node by examining PVFS/application logs (neither of which will indicate any errors) [10].

Fail-stop performance problems usually result in an outright server crash, making it relatively

easy to identify the faulty server. Our work targets the diagnosis of non-fail-stop performance

problems that can degrade server performance without escalating into a server crash. There are

basically three resources—CPU, storage, network—being contended for that are likely to cause

throughput degradation. CPU is an unlikely bottleneck as parallel file systems are mostly I/O-

intensive, and fair CPU scheduling policies should guarantee that enough time-slices are available.

Thus, we focus on the remaining two resources, storage and network, that are likely to pose per-

formance bottlenecks.
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Chapter 3

Approach

In applying our problem-diagnosis approach to large storage systems like Intrepid’s, our primary

objective is to localize to the most problematic LUNs (specifically LUN-server attachments that

we refer to as “LUNs” henceforth) in the storage system, which in turn, reflect the location of faults

with greatest performance impact.

3.1 Synopses of Approach

The flowchart in Figure 3.1 provides a synopses of our problem localization process, which consists

of three stages.

Our instrumentation consists of software deployed on each file server that collects OS-level

performance metrics on the system components, e.g., for every LUN, accessed and utilized by the

server. These server-perspective metrics are periodically collected and forwarded, from each file

server, to an analysis machine where the remainder of our problem localization takes place.

Our anomaly detection takes the component performance metrics and, using a peer-comparison-

based algorithm, identifies which of the components exhibit anomalous behavior, relative to its

peers, for a window of time.

Our persistence ordering takes the list of (server-perspective) anomalous components and lo-

calizes to the most problematic components by their persistent impact on overall performance.
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Figure 3.1: Flowchart describing our problem-diagnosis approach.

Finally, we present the problematic components as a list of suspects to an operator. By combin-

ing the suspect components with knowledge of the system topology, the operator may then infer

that problems originate from a specific set of faulty LUNs, storage controllers, storage attachments,

network links, or faulty file servers, and diagnose the problems to a root cause.

3.2 Instrumentation

For our problem diagnosis, we gather and analyze OS-level performance metrics, without requiring

any modifications to the file system, the applications, or the OS. For our laboratory experiments

(§ 4) we gather and analyze both storage and network metrics. For our case study of Intrepid’s

storage system (§ 5), as we are principally concerned with problems that manifest at the layer of

NSD Servers and below (see § 5.2), we gather and utilize storage-related metrics only.

3.2.1 OS-level Performance Metrics

In Linux, OS-level performance metrics are made available as text files in the /proc pseudo

file system. Table 3.1 describes the specific metrics that we collect. We use sysstat’s sadc pro-

gram [24] to periodically gather storage and network performance metrics at a sampling interval

of one second, and record them in activity files. For storage resources, sysstat provides us with
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Metric [s/n]* Significance
tps [s] Number of I/O (read and write) requests made to (a specific) LUN per second.
rd_sec [s] Number of sectors read from the LUN per second.
wr_sec [s] Number of sectors written to the LUN per second.
avgrq-sz [s] Average size (in sectors) of the LUN’s I/O requests.
avgqu-sz [s] Average number of the LUN’s queued I/O requests.

await [s]
Average time (in milliseconds) that a request waits to complete on the LUN; includes queuing
delay and service time.

svctm [s]
Average (LUN) service time (in milliseconds) of I/O requests; does not include any queuing
delay.

%util [s] Percentage of CPU time in which I/O requests are made to the LUN.
rxpck [n] Packets received on (a specific) network interface per second.
txpck [n] Packets transmitted on the interface per second.
rxbyt [n] Bytes received on the interface per second.
txbyt [n] Bytes transmitted on the interface per second.
cwnd [n] Number of segments (per TCP socket) allowed to be sent outstanding without acknowledgment.

*Denotes storage (s) or network (n) related metric.

Table 3.1: Black-box, OS-level performance metrics collected for analysis.

the throughput (tps, rd_sec, wr_sec) and latency (await, svctm) of the file server’s I/O

requests to each of the LUNs the file server is attached to. Since our instrumentation is deployed

on file servers, we actually observe the compound effect of disk arrays, controllers, attachments,

and the file server on the performance of these I/O requests. For network resources, sysstat pro-

vides us with throughput (rxpck, txpck, rxbyt, txbyt) metrics for each of the file server’s

network interfaces. In addition, /proc provides TCP congestion-control data (e.g., cwnd) [55]

on a per-socket basis that we can capture with a custom tool.

In § 4.2, we describe properties of the collected storage and network metrics and their appli-

cation to problem diagnosis. We also find that sadc instrumentation has negligible overhead (<

1% runtime overhead in benchmarks) and an uncompressed data volume of 3.8 kB/s on each file

server in our experiment cluster. Intrepid file servers, since they have many more attached LUNs

compared to our experiment cluster, yield an uncompressed data volume of 13.6 kB/s on each file

server.

In general we find that await is the best single metric for problem diagnosis in parallel file

systems as it reflects differences in latency due to both (i) component-level delays (e.g., read errors)

and (ii) disparities in request queue length, i.e., differences in workload. Since workload disparities
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also manifest in changes in throughput, instances in which await is anomalous but not rd_sec

and wr_sec indicate a component-level problem.

3.2.2 Continuous Instrumentation

As our laboratory experiments were of relatively short duration (∼600 s), we were able to spawn

instances of sadc to record activity files for the duration of our experiments, and perform all

analysis once the experiments had finished and the activity files were completely written. For

Intrepid, we must continuously instrument and collect data, while also periodically performing

offline analysis. To do so, we use a custom daemon, cycle, to spawn daily instances of sadc

shortly after midnight UTC, at which time we are able to collect the previous day’s activity files

for analysis.

Although the cycle daemon performs a conceptually simple task, we have observed a num-

ber of practical issues in deployment that motivated the development of robust time-management

features. We elaborate on our experiences with these issues in § 5.9. To summarize, the present

version of cycle implements the following features:

• Records activity files with filenames specified with an ISO 8601-formatted UTC timestamp of

sadc’s start time.

• Creates new daily activity files at 00:00:05 UTC, which allows up to five seconds of clock

backwards-correction without creating a second activity file at 23:59 UTC on the previous day.

• Calls sadc to record activity files with a number of records determined by the amount of time re-

maining before 00:00:05 UTC the next day, as opposed to specifying a fixed number of records.

This prevents drifts in file-creation time due to accumulating clock corrections. It also allows

for the creation of shorter-duration activity files should a machine be rebooted in the middle of

the day.
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3.2.3 Other Instrumentation Sources

Although we have settled on OS-level performance metrics as being an ideal for our goals of

avoiding software modifications and minimizing instrumentation overheads, in the past we have

considered alternate instrumentation sources and briefly compare them here.

Syscall Traces. In [33], we investigate the use of syscalls to diagnose performance problems in

addition to propagated errors and crash/hang problems in PVFS. From syscall traces we derived

four performance metrics of interest: disk-read and -write service times (dread and dwrite),

and server’s and client’s network-read times (nsread and ncread). dread and dwrite are the

values of the wall-clock service times for read and write syscalls, respectively, on file server storage

objects. nsread and ncread represent the amount of time that it takes for the server (client) to

read a single PVFS request (response) over the network. Comparing to OS-level metrics, the

summed average of dread and dwrite is analogous to the await metric in reflecting storage

latency, while nsread and ncread offer insight into network latency not made available via

/proc. While we find syscall tracing to have negligible overhead on large-I/O workloads with

bulk transfers, we observe on metadata-intensive workloads a runtime overhead of 64%. We also

observe that even among the most syscall-conservative workloads a data volume of 1 MB/s on each

file server in our experiment cluster [32]. Thus, although syscall tracing is able to diagnosing non-

performance problem in PVFS, we find the instrumentation overheads to be cumbersome relative

to OS-level metrics.

Sample Profiles and Function-Call Traces. In [34], we investigate the use of CPU instruction-

pointer sample profiles and function-call traces to localize performance problems in PVFS. For

sample profiling, we run OProfile on each PVFS server to collect samples of the CPU instruction

pointer along with execution context, which we then resolve to executing programs and function

names (samples metric). For function call-tracing, we use a custom C-based module to instrument

PVFS function-call sites on both entry and exit, where we count the number of times a function
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is called (count metric) and record the (wall-clock) time spent executing inside that function (time

metric). Comparing to syscall tracing and OS-level metrics, time for blocked-I/O functions is anal-

ogous to await, dread, and dwrite metrics in reflecting storage latency, samples for kernel

TCP functions reflects network (TCP) throughput, and count for PVFS’s non-blocking network

poll loop reflects network latency similar to the nsread metric. We find that sample profil-

ing and function-call tracing both have < 7% runtime overheads for large-I/O workloads, while

function-call tracing of metadata-intensive workloads has a runtime overhead of 122%. We also

observe that sample profiling and function call-tracing have data volumes of approximately 37 kB/s

and 4.5 kB/s–8.0 kB/s (depending on workload) respectively on each file server in our experiment

cluster. Furthermore, we note that sample profiling requires (debugging) function symbols to be

present in the kernel and file server daemon, while our function-call tracing module requires file

server source code to insert instrumentation at compile-time. Thus, while sample profiling and

function-call tracing offer code-level insights to diagnosing performance problems, we find these

instrumentation approaches difficult to deploy in production environments due to their runtime

overheads and required modification of file server software.

3.3 Anomaly Detection

The purpose of anomaly detection is to determine which storage system components (LUNs and

servers) are instantaneously reflecting anomalous, non-peer behavior. To do so, we developed

a statistical peer-comparison algorithm for detecting performance problems in [36], which we

refined in our later work [35]. Here we present the final version of the peer-comparison algorithm,

as it completes our overall approach. In § 4.6, we describe the first version of the algorithm, and in

§ 5.3, we detail the differences between the two versions and motivate the specific revisions made

between them.

Inevitably, any diagnosis algorithm has configurable parameters that are based on the char-

acteristics of the data set for analysis, the pragmatic resource constraints, the specific analytical
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technique being used, and the desired diagnostic accuracy. In the process of explaining our algo-

rithms below, we also explain the intuition behind the settings of some of these parameters.

Overview. To find the faulty component, we peer-compare performance metrics (e.g., storage

and network metrics) across components (e.g., LUNs and servers) to determine those with anoma-

lous behavior. We analyze one metric at a time across all components. For each component we

first perform a moving average on its metric values. We then generate a distribution function of the

smoothed values over a time window of WinSize samples. We then compute the distance between

the distributions for each pair of components, which represents the degree to which components

behave differently. We then flag a component as anomalous over a window if more than half of its

pairwise distribution-function distances exceed a predefined threshold. We then shift the window

by WinShi f t samples, leaving an overlap of WinSize−WinShi f t samples between consecutive

windows, and repeat the analysis. We classify a component to be faulty if it exhibits anomalous

behavior for at least k of the past 2k−1 windows.

Downsampling. As Intrepid occasionally exhibits a light workload with requests often sepa-

rated by periods of inactivity, in our case study of Intrepid we downsample each storage metric to

an interval of 15 s while keeping all other diagnosis parameters the same.1 This ensures that we

incorporate a reasonable quantity of non-zero metric samples in each comparison window to detect

asymmetries. It also serves as a scalability improvement by decreasing analysis time, and decreas-

ing storage and (especially) memory requirements. This is a pragmatic consideration, given that

the amount of memory required would be otherwise prohibitively large.2

Since sadc records each of our storage metrics as a rate or time average, proper downsampling

requires that we compute the metric’s cumulative sum, that we then sample (at a different rate), to

generate a new average time series. This ensures any work performed between samples is reflected

in the downsampled metric just as it is in the original metric. In contrast, sampling the metric

1No downsampling is performed in the PVFS and Lustre test-bench experiments.
2We frequently ran out of memory when attempting to analyze the data of a single metric, sampling at 1 s, on

machines with 4 GB RAM.
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directly would lose any such work, which leads to inaccurate peer-comparison. The result of the

downsampling operation is equivalent to running sadc with a larger sampling interval.

Moving Average Filter. Sampled storage metrics, particularly for heavy workloads, can contain

a large amount of high-frequency (relative to sample rate) noise from which it is difficult to observe

subtle, but sustained fault manifestations. Thus, we employ a moving average filter with a 15-

sample width to remove this noise. As we do not expect faults to manifest in a periodic manner with

a periodicity less than 15 samples, this filter should not unintentionally mask fault manifestations.

CDF Distances. For the refined version of our peer-comparison algorithm, we use cumulative

histograms to approximate the CDF of a component’s smoothed metric values. In generating

the histograms we use a modified version of the Freedman-Diaconis rule [19] to select the bin

size, BinSize = 2IQR(x)WinSize−1/3, and number of bins, Bins = dRange(x)/BinSizee where x

contains samples across all LUNs in the time window. Even though the generated histograms

contain samples from a single component, we compute BinSize using samples from all components

to ensure that the resulting histograms have compatible bin parameters and, thus, are comparable.

Since each histogram contains only WinSize samples, we compute BinSize using WinSize number

of observations. Once histograms are generated for each component’s values, we compute for each

pair of histograms P and Q the (symmetric) distance: d(P,Q) = ∑
Bins
i=0 |P(i)−Q(i)|, a scalar value

that represents how different two histograms, and thus components, are from each other.

Windowing and Anomaly Filtering. From our laboratory experiments, we found that a WinSize

of ∼60 samples encompassed enough data such that our components were observable as peers,

while also maintaining a reasonable diagnosis latency (§ 4.7.2). We use a WinShi f t of 30 sam-

ples between each window to ensure a sufficient window overlap (also 30 samples) so as to provide

continuity of behavior from an analysis standpoint. We classify a LUN as faulty if it shows anoma-

lous behavior for 3 out of the past 5 windows (k = 3). This filtering process reduces many of the

spurious anomalies associated with sporadic asymmetry events where no underlying fault is actu-
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ally present, but adds to the diagnosis latency. The WinSize, WinShi f t, and k values that we use,

along with our moving-average filter width, were derived from our laboratory experiments as hav-

ing providing the best empirical accuracy rates and are similar to the values we published in [36],

while also providing for analysis windows that are round to the half-minute. The combined effects

of downsampling, windowing, and anomaly filtering result in a diagnosis latency (the time from

initial incident to diagnosis) of 22.5 minutes.

3.3.1 Threshold Selection

In both our laboratory experiments and case study of Intrepid, the pairwise distribution-function

(e.g., CDF) distance thresholds used to differentiate faulty from fault-free components are deter-

mined through a fault-free training phase that captures the maximum expected deviation in com-

ponent behavior. For our laboratory experiments, we describe its training phase details in § 4.6.1.

For our case study, we use an entire day’s worth of data to train thresholds for Intrepid. This is

not necessarily the minimum amount of data needed for training, but it is convenient for us to use

since our experiment data is grouped by days. We train using the data from the first (manually

observed) fault-free day when the system sees reasonable utilization. If possible, we recommend

training during stress tests that consist of known workloads, which are typically performed before

a new or upgraded storage system goes into production. We can (and do) use the same thresholds

in on-going diagnosis, although retraining would be necessary in the event of a system reconfigu-

ration, e.g., if new LUNs are added. Alternatively we could retrain on a periodic (e.g., monthly)

basis as a means to tolerate long-term changes to LUN performance. However, in practice, we

have not witnessed a significant increase in spurious anomalies during our 15-month study.

To manually verify that a particular day is reasonably fault-free and suitable for training, we

generate, for each peer group, plots of superimposed awaits for all LUNs within that peer group.

We then inspect these plots to ensure that there is no concerning asymmetry among peers, a process

that is eased by the fact that most problems manifest as observable loads in normally zero-valued

non-primary peer groups. Even if training data is not perfectly fault-free (either due to minor
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problems that are difficult to observed from await plots, or because no such day exists in which

faults are completely absent), the influence of faults is only to dampen alarms on the faulty compo-

nents; non-faulty components remain unaffected. Thus, we recommend that training data should

be sufficiently free from observable problems that an operator would feel comfortable operating

the cluster indefinitely in its state at the time of training.

3.4 Persistence Ordering

While anomaly detection provides us with a reliable account of instantaneously anomalous com-

ponents, systems of comparable size to Intrepid with thousands of analyzed components, nearly

always exhibit one or more anomalies for any given time window, even in the absence of an ob-

servable performance degradation.

Motivation. The fact that anomalies “always exist” is a key fact that requires us to alter our focus

as we graduate from test-bench clusters to performing problem diagnosis on real systems. In our

laboratory experiments, instantaneous anomalies were rare and either reflected the presence of our

injected faults (which we aimed to observe), or the occurrence of false positive (which we aimed

to avoid). However, in Intrepid, “spurious” anomalies (even with anomaly filtering) are common

enough that we simply cannot raise alarms on each. It is also not possible to completely avoid the

alarms through tweaking of analysis parameters (filter width, WinSize and WinShi f t, etc.).

Investigating these spurious anomalies, we find that many are clear instances of transient asym-

metries in our raw instrumentation data, due to occasional but regular events where behavior devi-

ates across components. Thus, for Intrepid, we focus our concern on locating system components

that demonstrate long-term, or persistent anomalies, because they are suggestive of possible im-

pending component failures or problems that might require manual intervention in order to resolve.

Algorithm. To localize persistent anomalies, it is necessary for us to order the list of anoma-

lous components by a measure of their impact on overall performance. To do so, we maintain a
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positive-value accumulator for every component in which we add one (+1) for each window where

the component is anomalous, and subtract one (−1, and only if the accumulator is > 0) for each

window where the component is not. We then present to the operator a list of persistently anoma-

lous components that are ordered by decreasing accumulator value, i.e., the top-most component

in the list is that which has the most number of anomalous windows in its recent history.
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Chapter 4

Small Scale Validation: Lab Experiments

To demonstrate proof-of-concept of our peer-comparison algorithm, we first performed a set of lab-

oratory experiments by injecting four realistic problems during execution of synthetic workloads

on controlled, test-bench PVFS and Lustre storage clusters of up to 12 file servers.

4.1 Problems Studied for Diagnosis

We separate problems involving storage and network resources into two classes. The first class is

hog faults, where a rogue process on the monitored file servers induces an unusually high workload

for the specific resource. The second class is busy or loss faults, where an unmonitored (i.e., outside

the scope of the server OSes) third party creates a condition that causes a performance degradation

for the specific resource. To explore all combinations of problem resource and class, we study the

diagnosis of four problems—disk-hog, disk-busy, network-hog, packet-loss (network-busy).

Disk-hogs can result from a runaway, but otherwise benign, process. They may occur due to

unexpected cron jobs, e.g., an updatedb process generating a file/directory index for GNU

locate, or a monthly software-RAID array verification check. Disk-busy faults can also occur in

shared-storage systems due to a third-party/unmonitored node that runs a disk-hog process on the

shared-storage device; we view this differently from a regular disk-hog because the increased load

on the shared-storage device is not observable as a throughput increase at the monitored servers.
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Network-hogs can result from a local traffic-emitter (e.g., a backup process), or the receipt of

data during a denial-of-service attack. Network-hogs are observable as increased throughput (but

not necessarily “goodput”) at the monitored file servers. Packet-loss faults might be the result of

network congestion, e.g., due to a network-hog on a nearby unmonitored node or due to packet

corruption and losses from a failing NIC.

4.2 Parallel File System Behavior

We highlight our (empirical) observations of PVFS’s and Lustre’s behavior that we believe is

characteristic of stripe-based parallel file systems.

[Observation 1] In a homogeneous (i.e., identical hardware) cluster, I/O servers (specifically,

their LUNs) track each other closely in throughput and latency, under fault-free conditions.

For N I/O servers, each with one LUN, I/O requests of size greater than (N − 1)× stripe_size

results in I/O on each server (and henceforth, its LUN) for a single request. Multiple I/O requests

on the same file, even for smaller request sizes, will quickly generate workloads1 on all servers.

Even I/O requests to files smaller than stripe_size will generate workloads on all I/O servers, as

long as enough small files are read/written. We observed this for all three target benchmarks, dd,

IOzone, and PostMark. For metadata-intensive workloads, we expect that metadata servers also

track each other in proportional magnitudes of throughput and latency.

[Observation 2] When a fault occurs on at least one of the I/O servers, the other (fault-free) I/O

servers experience an identical drop in throughput.

When a client syscall involves requests to multiple I/O servers, the client must wait for all of

these servers to respond before proceeding to the next syscall.2 Thus, the client-perceived cluster

1Pathological workloads might not result in equitable workload distribution across I/O servers; one server would
be disproportionately deluged with requests, while the other servers are idle, e.g., a workload that constantly rewrites
the same stripe_size chunk of a file.

2Since Lustre performs client side caching and readahead, client I/O syscalls may return immediately even if the
corresponding file server is faulty. Even so, a maximum of 32 MB may be cached (or 40 MB pre-read) before Lustre
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Figure 4.1: Peer-asymmetry of rd_sec for iozoner workload with disk-hog fault.

performance is constrained by the slowest server. We call this the bottlenecking condition. When

a server experiences a performance fault, that server’s per-request service-time increases. Because

the client blocks on the syscall until it receives all server responses, the client’s syscall-service time

also increases. This leads to slower application progress and fewer requests per second from the

client, resulting in a proportional decrease in throughput on all I/O servers.

[Observation 3] When a performance fault occurs on at least one of the I/O servers, the other

(fault-free) I/O servers are unaffected in their per-request service times.

Because there is no server-server communication (i.e., no server inter-dependencies), a perfor-

mance problem at one server will not adversely impact latency (per-request service-time) at the

other servers. If these servers were previously highly loaded, latency might even improve (due to

potentially decreased resource contention).

must wait for responses.
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Figure 4.2: No asymmetry of rd_sec for iozoner workload with disk-busy fault.

[Observation 4] For disk/network-hog faults, storage/network-throughput increases at the faulty

server and decreases at the non-faulty servers.

A disk/network-hog fault at a server is due to a third-party that creates additional I/O traffic that

is observed as increased storage/network-throughput. The additional I/O traffic creates resource

contention that ultimately manifests as a decrease in file-server throughput on all servers (causing

the bottlenecking condition of observation 2). Thus, disk- and network-hog faults can be localized

to the faulty server by looking for peer-divergence (i.e. asymmetry across peers) in the storage-

and network-throughput metrics, respectively, as seen in Figure 4.1.

[Observation 5] For disk-busy (packet-loss) faults, storage- (network-) throughput decreases on

all servers.

For disk-busy (packet-loss) faults, there is no asymmetry in storage (network) throughputs across

I/O servers (because there is no other process to create observable throughput, and the server
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Figure 4.3: Peer-asymmetry of await for ddr workload with disk-hog fault.

daemon has the same throughput at all the nodes). Instead, there is a symmetric decrease in the

storage-(network-) throughput metrics across all servers. Because asymmetry does not arise, such

faults cannot be diagnosed, as seen in Figure 4.2.

[Observation 6] For disk-busy and disk-hog faults, storage-latency increases on the faulty server

and decreases at the non-faulty servers.

For disk-busy and disk-hog faults, await, avgqu-sz and %util increase at the faulty server

as the disk’s responsiveness decreases and requests start to backlog. The increased await on the

faulty server causes an increased server response-time, making the client wait longer before it can

issue its next request. The additional delay that the client experiences reduces its I/O throughput,

resulting in the fault-free servers having increased idle time. Thus, the await and %util metrics

decrease asymmetrically on the fault-free I/O servers, enabling a peer-comparison diagnosis of the

disk-hog and disk-busy faults, as seen in Figure 4.3.
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Figure 4.4: Peer-asymmetry of cwnd for ddw workload with receive-pktloss fault.

[Observation 7] For network-hog and packet-loss faults, the TCP congestion-control window

decreases significantly and asymmetrically on the faulty server.

The goal of TCP congestion control is to allow cwnd to be as large as possible, without experienc-

ing packet-loss due to overfilling packet queues. When packet-loss occurs and is recovered within

the retransmission timeout interval, the congestion window is halved. If recovery takes longer

than retransmission timeout, cwnd is reduced to one segment. When nodes are transmitting data,

their cwnd metrics either stabilize at high (≈100) values or oscillate (between ≈10–100) as con-

gestion is observed on the network. However, during (some) network-hog and (all) packet-loss

experiments, cwnds of connections to the faulty server dropped by several orders of magnitude

to single-digit values and held steady until the fault was removed, at which time the congestion

window was allowed to open again. These asymmetric sustained drops in cwnd enable peer-

comparison diagnosis for network faults, as seen in Figure 4.4.
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4.3 Discussion on Metrics

Although faults present in multiple metrics, we have observed that not all metrics are appropriate

for diagnosis as they exhibit inconsistent behaviors. Here we describe problematic metrics.

Storage-Throughput Metrics. There is a notable relationship between the storage-throughput

metrics: tps× avgrq-sz = rd_sec+ wr_sec. While rd_sec and wr_sec accurately

capture real storage activity and strongly correlate across I/O servers, tps and avgrq-sz do

not correlate as strongly because a lower transfer rate may be compensated by issuing larger-sized

requests. Thus, tps is not a reliable metric for diagnosis.

svctm. The impact of disk faults on svctm is inconsistent. The influences on storage service

times are: time to locate the starting sector (seek time and rotational delay), media-transfer time,

reread/rewrite time in the event of a read/write error, and delay time to due servicing of unobserv-

able requests. During a disk fault, servicing of interleaved requests increases seek time. Thus,

for an unchanged avgrq-sz, svctm will increase asymmetrically on the faulty server. Further-

more, during a disk-busy fault, servicing of unobservable requests further increases svctm due

to request delays. However, during a disk-hog fault, the hog process might be issuing requests of

smaller sizes than PVFS/Lustre. If so, then the associated decrease in media-transfer time might

offset the increase in seek time resulting in a decreased or unchanged svctm. Thus, svctm is not

guaranteed to exhibit asymmetries for disk-hogs, and therefore is unreliable.

Other Metrics. While problems manifest on other metrics (e.g., CPU usage, context-switch

rate), these secondary manifestations are due to the overall reduction in I/O throughput during

the faulty period, and reveal nothing new. Thus, we do not analyze these metrics.
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4.4 Experimental Set-Up

We perform our experiments on AMD Opteron 1220 machines, each with 4 GB RAM, two Sea-

gate Barracuda 7200.10 320 GB disks (one dedicated for PVFS/Lustre storage), and a Broadcom

NetXtreme BCM5721 Gigabit Ethernet controller. Each node runs Debian GNU/Linux 4.0 (etch)

with Linux kernel 2.6.18. The machines run in stock configuration with background tasks turned

off. We conduct experiments with x/y configurations, i.e., the PVFS x/y cluster comprises y com-

bined I/O and metadata servers and x clients, while the equivalent Lustre x/y cluster comprises y

object storage (I/O) servers with a single object storage target each, a single (dedicated) metadata

server, and x clients. We conduct our experiments for 10/10 and 6/12 PVFS and Lustre clusters;3

we explain the 10/10 cluster experiments in detail, but our observations carry to both.

For these experiments PVFS 2.8.0 is used in the default server (pvfs2-genconfig gener-

ated) configuration with two modifications. First, we use the Direct I/O method (TroveMethod

directio) to bypass the Linux buffer cache for PVFS I/O server storage. This is required for

diagnosis as we otherwise observe disparate I/O server behavior during IOzone’s rewrite phase.

Although bypassing the buffer cache has no effect on diagnosis for non-rewrite (e.g., ddw) work-

loads, it does improve large write throughput by 10%.

Second, we increase to 4 MB (from 256 kB) the Flow buffer size (FlowBufferSizeBytes)

to allow larger bulk data transfers and enable more efficient disk usage. This modification is

standard practice in PVFS performance tuning, and is required to make our testbed performance

representative of real deployments. It does not appear to affect diagnosis capability. In ad-

dition, we patch the PVFS kernel client to eliminate the 128 MB total size restriction on the

/dev/pvfs2-req device request buffers and to vmalloc memory (instead of kmalloc) for

the buffer page map (bufmap_page_array) to ensure that larger request buffers are actually

allocatable. We then invoke the PVFS kernel client with 64 MB request buffers (desc-size

parameter) in order to make the 4 MB data transfers to each of the I/O servers.

3Due to a limited number of nodes we were unable to experiment with higher active client/server ratios. However,
with the workloads and faults tested, an increased number of clients appears to degrade per-client throughput with no
significant change in other behavior.
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For Lustre experiments we use the etch backport of the Lustre 1.6.6 Debian packages in the

default server configuration with a single modification to set the lov.stripecount parameter

to −1 to stripe files across each object storage target (I/O server).

The nodes are rebooted immediately prior to the start of each experiment. Time synchroniza-

tion is performed at boot-time using ntpdate. Once the servers are initialized and the client is

mounted, monitoring agents start capturing metrics to a local (non-storage dedicated) disk. sync

is then performed, followed by a 15-second sleep, and the experiment benchmark is run. The

benchmark runs fault-free for 120 seconds prior to fault injection. The fault is then injected for

300 seconds and then deactivated. The experiment continues to the completion of the benchmark,

which ideally runs for a total of 600 seconds in the fault-free case. This run time allows the bench-

mark to run for at least 180 seconds after a fault’s deactivation to determine if there are any delayed

effects. We run ten experiments for each workload & fault combination, using a different faulty

server for each iteration.

4.4.1 Workloads

We use five experiment workloads derived from three experiment benchmarks: dd, IOzone, and

PostMark. The same workload is invoked concurrently on all clients. The first two workloads,

ddw and ddr, either write zeros (from /dev/zero4) to a client-specific temporary file or read the

contents of a previously written client-specific temporary file and write the output to /dev/null.

dd [58] performs a constant-rate, constant-workload large-file read/write from/to disk. It is the

simplest large-file benchmark to run, and helps us to analyze and understand the system’s behavior

prior to running more complicated workloads. dd models the behavior of scientific-computing

workloads with constant data-write rates.

Our next two workloads, iozonew and iozoner, consist of the same file-system benchmark,

4We use /dev/zero to minimize read impact on system metrics. Reading from other physical block devices
creates a confounding I/O workload, /dev/urandom is CPU-intensive, and /dev/mem does not source enough
data. There is no evidence that compression is performed anywhere in the request path or that PVFS/Lustre treat zero
data different from arbitrary data.
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IOzone v3.283 [7]. We run iozonew in write/rewrite mode and iozoner in read/reread mode.

IOzone’s behavior is similar to dd in that it has two constant read/write phases. Thus, IOzone is a

large-file I/O-heavy benchmark with few metadata operations. However, there is an fsync and a

workload change half-way through.

Our fifth benchmark is PostMark v1.51 [37]. PostMark was chosen as a metadata-server heavy

workload with small file writes (all writes < 64 kB thus, writes occur only on a single I/O server

per file).

4.4.2 Configurations of Workloads

For the ddw workload, we use a 17 GB file with a record-size of 40 MB for PVFS, and a 30 GB

file is used with a record-size 10 MB for Lustre. File sizes are chosen to result in a fault-free

experiment runtime of approximately 600 seconds. The PVFS record-size was chosen to result in

4 MB bulk data transfers to each I/O server, which we empirically determined to be the knee of

the performance vs. record-size curve. The Lustre record-size was chosen to result in 1 MB bulk

data transfers to each I/O server—the maximum payload size of a Lustre RPC. Since Lustre both

aggregates client writes and performs readahead, varying the record-size does not significantly

alter Lustre read or write performance. For ddr we use a 27 GB file with a record-size of 40 MB

for PVFS, and a 30 GB file with a record-size of 10 MB for Lustre (same as ddw).

For both the iozonew and iozoner workloads, we use an 8 GB file with a record-size of

16 MB (the largest that IOzone supports) for PVFS. For Lustre we use a 9 GB file with a record-size

of 10 MB for iozonew, and a 16 GB file with the same record-size for iozoner. For postmark

we use its default configuration with 16,000 transactions for PVFS and 53,000 transactions for

Lustre to give a sufficiently long-running benchmark.
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4.5 Fault Injection

In our fault-induced experiments, we inject a single fault at a time into one of the I/O servers to

induce degraded performance for either network or storage resources. We inject the following

faults:

• disk-hog: a dd process that reads 256 MB blocks (using direct I/O) from an unused storage disk

partition.

• disk-busy: an sgm_dd process [23] that issues low-level SCSI I/O commands via the Linux

SCSI Generic (sg) driver to read 1 MB blocks from the same unused storage disk partition.

• network-hog: a third-party node opens a TCP connection to a listening port on one of the PVFS

I/O servers and sends zeros to it (write-network-hog), or an I/O server opens a connection and

sends zeros to a third party node (read-network-hog).

• pktloss: a netfilter firewall rule that (probabilistically) drops packets received at one of the I/O

servers with probability 5% (receive-pktloss), or a firewall rule on all clients that drops packets

incoming from a single server with probability 5% (send-pktloss).

Real packet-loss due to a failing NIC can show up in black-box metrics as Ethernet frame

errors, while our synthetic strategy will not. We believe that our fault-injection strategy is more

general because it also emulates silent losses instead of corruptive losses alone. A caveat is that

the network-throughput data (packets received) for the faulty server does count the packets as

having been lost, making the data slightly inflated compared to reality. From our peer-comparison

approach’s viewpoint, this is a hindrance as the faulty server’s network-throughput data will look

closer to those of non-faulty nodes. In reality, the 5% packet-loss is insignificant compared to

the order of magnitude decrease in network-throughput due to the behavior of TCP’s congestion

control.
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4.6 Diagnosis Algorithm

For the faults studied in our laboratory experiments our diagnostic algorithm consists of two

phases: (i) anomaly detection, where we identify the faulty server, and (ii) root-cause analysis,

where we identify the resource at fault.

4.6.1 Anomaly Detection: Finding the Faulty Server

For the first version of our peer-comparison algorithm (§ 3.3 presents an overview of our revised al-

gorithm) we considered several statistical properties (e.g., the mean, the variance, etc. of a metric)

as candidates for peer-comparison across servers, but ultimately chose the probability distribu-

tion function (PDF) of each metric because it captures many of the metric’s statistical properties.

Figure 4.5 shows the asymmetry in a metric’s histograms/PDFs between the faulty and fault-free

servers.

Histogram-Based Approach. We determine the PDFs, using histograms as an approximation,

of a specific black-box metric values over a window of time (of size WinSize seconds) at each I/O

server. To compare the resulting PDFs across the different I/O servers, we use a standard measure,

the Kullback-Leibler (KL) divergence [14], as the distance between two distribution functions,

P and Q. The KL divergence of a distribution function, Q, from the distribution function, P, is

given by D(P||Q) = ∑i P(i) log P(i)
Q(i) . We use a symmetric version of the KL divergence, given by

D′(P||Q) = 1
2 [D(P||Q)+D(Q||P)] in our analysis.

We perform the following procedure for each of metric of interest. Using i to represent one

of these metrics, we first perform a moving average on i. We then take PDFs of the smoothed i

for two distinct I/O servers at a time and compute their pairwise KL divergences. A pairwise KL-

divergence value for i is flagged as anomalous if it is greater than a certain predefined threshold.

An I/O server is flagged as anomalous if its pairwise KL-divergence for i is anomalous with more

than half of the other servers for at least k of the past 2k− 1 windows. We then shift the window

by WinShi f t samples, leaving an overlap of WinSize−WinShi f t samples between consecutive
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windows, and repeat the analysis.

We use a 5-point moving average to ensure that metrics reflect average behavior of request pro-

cessing. We also use a WinSize of 64, a WinShi f t of 32, and a k of 3 in our analysis to incorporate

a reasonable quantity of data samples per comparison while maintaining a reasonable diagnosis

latency (approximately 90 seconds). We investigate the useful ranges of these values in § 4.7.2.

Time Series-Based Approach. We use the histogram-based approach for all metrics except

cwnd. Unlike other metrics, cwnd tends to be noisy under normal conditions with no closely-

coupled peer behavior. This is expected as TCP congestion control prevents synchronized connec-

tions from fully utilizing link capacity. Since we found that the histogram-based approach insuf-

ficiently detects network (packet-loss) problems with this metric, we have adopted a time-series

based approach that is unique to the analysis of cwnd in our laboratory experiments.

Fortunately, there is a simple heuristic that we exploit for detecting packet-loss using cwnd.

TCP congestion control responds to packet-loss by halving cwnd, which results cwnd exponential

decay after multiple loss events. When viewed on a logarithmic scale, sustained packet-loss results

in a linear decrease for each packet lost.

To support analysis of cwnd, we first generate a time-series by performing a moving average on

cwndwith a window size of 31 seconds and computing its base-two logarithm. Based on empirical

observation, the moving-average filter attenuates the effect of sporadic transmission timeout events

while enabling reasonable diagnosis latencies (i.e., under one minute). Then, every second, a

representative value (median) is computed of the log-cwnd values. A server is indicted if, at the

sample time, its log-cwnd is less than a predetermined fraction (threshold) of the median.

Threshold Selection. Both the histogram and time-series analysis algorithms require thresholds

to differentiate between faulty and fault-free servers. We determine the thresholds through a fault-

free training phase that captures the maximum expected deviation in server performance.

We do not need to train against all potential workloads, instead we train on workloads that

are expected to stress the system to its limits of performance. Since server performance devi-

41



ates the most when resources are saturated (and thus, are unable to “keep up” with other nodes),

these thresholds represent the maximum expected performance deviations under normal operation.

Less intense workloads, since they do not saturate server resources, are expected to exhibit bet-

ter coupled peer behavior. In our experiments, we train with 10 iterations of the ddr, ddw, and

postmark fault-free workloads. The same metrics are captured during training as when perform-

ing diagnosis.

To train the histogram algorithm, for each metric, we start with a minimum threshold value

(currently 0.1) and increase in increments (of 0.1) until the minimum threshold is determined that

eliminates all anomalies on a particular server. This server-specific threshold is doubled to provide

a cushion that masks minor manifestations occurring during the fault period. This is based on

the premise that a fault’s primary manifestation will cause a metric to be sufficiently asymmetric,

roughly an order of magnitude, yielding a “safe window” of thresholds that can be used without

altering the diagnosis.

Training the time-series algorithm is similar, except that the final threshold is not doubled as

the cwnd metric is very sensitive, yielding a much smaller corresponding “safe window”. Also,

only two thresholds are determined for cwnd, one for all servers sending to clients, and one for

clients sending to servers. As cwnd is generally not influenced by the performance of specific

hardware, its behavior is consistent across nodes.

4.6.2 Root-Cause Analysis

In addition to identifying the faulty server, we also infer the resource that is the root cause of the

problem through an expert derived checklist. This checklist, based on our observations (§ 4.2) of

PVFS’s/Lustre’s behavior, maps sets of peer-divergent metrics to the root cause. Where multiple

metrics may be used, the specific metrics selected are chosen for consistency of behavior (see

§ 4.3). If we observe peer-divergence at any step of the checklist, we halt at that step and arrive at

the root cause and faulty server. If peer-divergence is not observed at that step, we continue to the

next step of decision-making.
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Do we observe peer-divergence in . . .

1. Storage throughput? Yes: disk-hog fault

(rd_sec or wr_sec) No: next question

2. Storage latency? Yes: disk-busy fault

(await) No: . . .

3. Network throughput?* Yes: network-hog fault

(rxbyt or txbyt) No: . . .

4. Network congestion? Yes: packet-loss fault

(cwnd) No: no fault discovered

*Must diverge in both rxbyt & txbyt, or in absence of peer-divergence in cwnd (see § 4.8).

4.7 Results

PVFS Results. Tables 4.1 and 4.2 shows the accuracy (true- and false-positive rates) of our

diagnosis algorithm in indicting faulty nodes (ITP/IFP) and diagnosing root causes (DTP/DFP)5

for the PVFS 10/10 & 6/12 clusters.

It is notable that not all faults manifest equally on all workloads. disk-hog, disk-busy, and

read-network-hog all exhibit a significant (> 10%) runtime increase for all workloads. In contrast,

the receive-pktloss and send-pktloss only have significant impact on runtime for write-heavy and

read-heavy workloads respectively. Correspondingly, faults with greater runtime impact are often

the most reliably diagnosed. Since packet-loss faults have negligible impact on ddr & ddw ACK

flows and postmark (where lost packets are recovered quickly), it is reasonable to expect to not

be able to diagnose them.

When removing the workloads for which packet-loss cannot be observed (and thus, not diag-

nosed), the aggregate diagnosis rates improve to 96.3% ITP and 94.6% DTP in the 10/10 cluster,

5ITP is the percentage of experiments where all faulty servers are correctly indicted as faulty, IFP is the percentage
where at least one non-faulty server is misindicted as faulty. DTP is the percentage of experiments where all faults are
successfully diagnosed to their root causes, DFP is the percentage where at least one fault is misdiagnosed to a wrong
root cause (including misindictments).
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and to 67.2% ITP and 58.8% DTP in the 6/12 cluster.

Lustre Results. Tables 4.3 and 4.4 shows the accuracy of our diagnosis algorithm for the Lustre

10/10 & 6/12 clusters. When removing workloads for which packet-loss cannot be observed, the

aggregate diagnosis rates improve to 92.5% ITP and 86.3% DTP in the 10/10 cluster, and to 90.0%

ITP and 82.1% DTP in the 6/12 case.

Both 10/10 clusters exhibit comparable accuracy rates. In contrast, the PVFS 6/12 cluster ex-

hibits masked network-hogs faults (fewer true-positives) due to low network throughput thresholds

from training with unbalanced metadata request workloads (see § 4.8). The Lustre 6/12 cluster ex-

hibits more misdiagnoses (higher false-positives) due to minor, secondary manifestations in storage

throughput. This suggests that our analysis algorithm may be refined with a ranking mechanism

that allows diagnosis to tolerate secondary manifestations. In § 3.4, we introduce persistence or-

dering as one such ranking mechanism motivated by our case study of Intrepid.

4.7.1 Diagnosis Overheads & Scalability

Instrumentation Overhead. Table 4.5 reports runtime overheads for instrumentation of both

PVFS and Lustre for our five workloads. Overheads are calculated as the increase in mean work-

load runtime (for 10 iterations) with respect to their uninstrumented counterparts. Negative over-

heads are result of sampling error, which is high due runtime variance across experiments. The

PVFS workload with the least runtime variance (iozoner) exhibits, with 99% confidence, a run-

time overhead < 1%. As the server load of this workload is comparable to the others, we conclude

that OS-level instrumentation has negligible impact on throughput and performance.

Data Volume. The performance metrics collected by sadc have an uncompressed data volume

of 3.8 kB/s on each server node, independent of workload or number of clients. The congestion-

control metrics sampled from /proc/net/tcp have a data volume of 150 B/s per socket on each

client & server node. While the volume of congestion-control data linearly increases with number
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Fault ITP IFP DTP DFP
None (control) 0.0% 0.0% 0.0% 0.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 90.0% 2.0% 90.0% 2.0%
write-network-hog 92.0% 0.0% 84.0% 8.0%
read-network-hog 100.0% 0.0% 100.0% 0.0%
receive-pktloss 42.0% 0.0% 42.0% 0.0%
send-pktloss 40.0% 0.0% 40.0% 0.0%
Aggregate 77.3% 0.3% 76.0% 1.4%

Table 4.1: Results of PVFS diagnosis for the 10/10 cluster.

Fault ITP IFP DTP DFP
None (control) 0.0% 2.0% 0.0% 2.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 100.0% 0.0% 100.0% 0.0%
write-network-hog 42.0% 2.0% 0.0% 44.0%
read-network-hog 0.0% 2.0% 0.0% 2.0%
receive-pktloss 54.0% 6.0% 54.0% 6.0%
send-pktloss 40.0% 2.0% 40.0% 2.0%
Aggregate 56.0% 2.0% 49.0% 8.0%

Table 4.2: Results of PVFS diagnosis for the 6/12 cluster.

Fault ITP IFP DTP DFP
None (control) 0.0% 0.0% 0.0% 0.0%
disk-hog 82.0% 0.0% 82.0% 0.0%
disk-busy 88.0% 2.0% 68.0% 22.0%
write-network-hog 98.0% 2.0% 96.0% 4.0%
read-network-hog 98.0% 2.0% 94.0% 6.0%
receive-pktloss 38.0% 4.0% 36.0% 6.0%
send-pktloss 40.0% 0.0% 38.0% 2.0%
Aggregate 74.0% 1.4% 69.0% 5.7%

Table 4.3: Results of Lustre diagnosis for the 10/10 cluster.

Fault ITP IFP DTP DFP
None (control) 0.0% 6.0% 0.0% 6.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 76.0% 8.0% 38.0% 46.0%
write-network-hog 86.0% 14.0% 86.0% 14.0%
read-network-hog 92.0% 8.0% 92.0% 8.0%
receive-pktloss 40.0% 2.0% 40.0% 2.0%
send-pktloss 38.0% 8.0% 38.0% 8.0%
Aggregate 72.0% 6.6% 65.7% 12.0%

Table 4.4: Results of Lustre diagnosis for the 6/12 cluster.
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Overhead for File System
Workload PVFS Lustre

ddr 0.90% ± 0.62% 1.81% ± 1.71%
ddw 0.00% ± 1.03% −0.22% ± 1.18%
iozoner −0.07% ± 0.37% 0.70% ± 0.98%
iozonew −0.77% ± 1.62% 0.53% ± 2.71%
postmark −0.58% ± 1.49% 0.20% ± 1.28%

Table 4.5: Instrumentation overhead: Increase in runtime w.r.t. non-instrumented workload ±
standard error.

of clients, it is not necessary to collect per-socket data for all clients. At minimum, congestion-

control data needs to be collected for only a single active client per time window. Collecting

congestion-control data from additional clients merely ensures that server packet-loss effects are

observed by a representative number of clients.

Algorithm Scalability. Our analysis code requires, every second, 3.44 ms per server and 182 µs

per server pair of CPU time on a 2.4 GHz dedicated core to diagnose a fault if any exists. Therefore,

realtime diagnosis of up to 88 servers may be supported on a single 2.4 GHz core.

Although the pairwise analysis algorithm is O(n2), we recognize that it is not necessary to

compare a given server against all others in every analysis window. To support very large clusters

(thousands of servers), we recommend partitioning n servers into n− k analysis domains of k

(e.g., 10) servers each, and only performing pairwise comparisons within these partitions. To

avoid undetected anomalies that might develop in static partitions, we recommend rotating partition

membership in each analysis window. Although we have not yet tested this technique, it does allow

for O(n) scalability.

4.7.2 Sensitivity

Histogram Moving-Average Span. Due to large record sizes, some workload & fault combi-

nations (e.g., ddr & disk-busy) yield request processing times up to 4 s. As client requests often

synchronize (see § 4.8), metrics may reflect distinct request processing stages instead of aggregate

behavior. For example, during a disk fault, the faulty server performs long, low-throughput storage
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operations while fault-free servers perform short, high-throughput operations. At 1 s resolution,

these behaviors reflect asymmetrically in many metrics. While this feature results in high (79%)

ITP rates, its presence in nearly all metrics results in high (10%) DFP rates as well. Furthermore,

since the influence of this feature is dependent on workload and number of clients, it is not reliable,

and therefore, it is important to perform metric smoothing.

However, “too much” smoothing eliminates medium-term variances, decreasing TP and in-

creasing FP rates. With 9-point smoothing, DFP (11%) exceeds unsmoothed while DTP reduces

by 11% to 58.3%. Therefore we chose 5-point smoothing to minimize IFP (2.4%) and DFP (6.7%)

with a modest decrease in DTP (64.9%).

Anomalous Window Filtering. In histogram-based analysis, servers are flagged anomalous only

if they demonstrate anomalies in k of the past 2k−1 windows. This filtering reduces false-positives

in the event of sporadic anomalous windows when no underlying fault is present. k in the range 3–7

exhibits a consistent 6% increase in ITP/DTP and a 1% decrease in IFP/DFP over the non-filtered

case. For k ≥ 8, the TP/FP rates decrease/increase again. We expect k’s useful-range upper-bound

to be a function of the time that faults manifest.

cwnd Moving-Average Span. For cwnd analysis a moving average is performed on the time

series to attenuate the effect of sporadic transmission timeouts. This enforces the condition that

timeout events sustain for a reasonable time period, similar to anomalous window filtering. Spans

in the range 5–31, with 31 the largest tested, exhibit a consistent 8% increase in ITP/DTP and a

1% decrease in IFP/DFP over the non-smoothed case.

WinSize & WinShift. Seven WinSizes of 32–128 with 16 sample steps, and seven WinShi f ts of

16–64 with 8 sample steps were tested to determine diagnosis influence. All WinSizes ≥ 48 and

WinShi f ts≥ 32 were comparable in performance (62–66% DTP, 6–9% DFP). Thus for sufficiently

large values, diagnosis is not sensitive.
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Histogram Threshold Scale Factor. Histogram thresholds are scaled by a factor (currently 2x)

to provide a cushion against secondary, minor fault manifestations (see § 4.6.1). At 1x, FP rates

increase to 19%/23% IFP/DFP. 1.5x reduces this to 3%/8% IFP/DFP. On the range 2–4x ITP/DTP

decreases from 70%/65% to 54%/48% as various metrics are masked, while IFP/DFP hold at

2%/7% as no additional misdiagnoses occur.

4.8 Experiences & Lessons

We describe some of our experiences, highlighting counterintuitive or unobvious issues that arose.

Heterogeneous Hardware. Clusters with heterogeneous hardware will exhibit performance char-

acteristics that might violate our assumptions. Unfortunately, even supposedly homogeneous hard-

ware (same make, model, etc.) can exhibit slightly different performance behaviors that impede

diagnosis. These differences mostly manifest when the devices are stressed to performance limits

(e.g., saturated disk or network).

Our approach can compensate for some deviations in hardware performance as long as our al-

gorithm is trained for stressful workloads where these deviations manifest. The tradeoff, however,

is that performance problems of lower severity (whose impact is less than normal deviations) may

be masked. Additionally, there may be factors that are non-linear in influence. For example, buffer-

cache thresholds are often set as a function of the amount of free memory in a system. Nodes with

different memory configurations will have different caching semantics, with associated non-linear

performance changes that cannot be easily accounted for during training.

Multiple Clients. Single- vs. multi-client workloads exhibit performance differences. In PVFS

clusters with caching enabled, the buffer cache aggregates contiguous small writes for single-client

workloads, considerably improving throughput. The buffer cache is not as effective with small

writes in multi-client workloads, with the penalty due to interfering seeks reducing throughput and

pushing disks to saturation.
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Figure 4.6: Single client cwnds for ddw workload with receive-pktloss fault.
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Figure 4.7: Multiple client cwnds for ddw workload with receive-pktloss fault.
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Figure 4.8: Disk-busy fault influence on faulty server’s cwnd for ddr workload.

This also impacts network congestion (see Figures 4.6 & 4.7). Single-client write workloads

(Figure 4.6) create single-source bulk data transfers, with relatively little network congestion. This

creates steady client cwnds that deviate sharply during a fault. Multi-client write workloads (Fig-

ure 4.7) create multi-source bulk data transfers, leading to interference, congestion and chaotic,

widely varying cwnds. While a faulty server’s cwnds are still distinguishable, this highlights the

need to train on stressful workloads.

Cross-Resource Fault Influences. Faults can exhibit cross-metric influence on a single resource,

e.g., a disk-hog creates increased throughput on the faulty disk, saturating that disk, increasing

request queuing and latency.

Faults affecting one resource can manifest unintuitively in another resource’s metrics. Consider

a disk-busy fault’s influence on the faulty server’s cwnd for a large read workload (see Figure 4.8).

cwnd is updated only when a server is both sending and experiencing congestion; thus, cwnd does
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Figure 4.9: Spread in rxbyt due to unbalanced metadata requests during postmark.

not capture the degree of network congestion when a server is not sending data. Under a disk-busy

fault, (i) a single client would send requests to each server, (ii) the fault-free servers would respond

quickly and then idle, and (iii) the faulty server would respond after a delayed disk-read request.

PVFS’s lack of client read-ahead blocks clients on the faulty server’s responses, effectively

synchronizing clients. Bulk data transfers occur in phases (ii) and (iii). During phase (ii), all fault-

free servers transmit, creating network congestion and chaotic cwnd values, whereas during phase

(iii), only the faulty server transmits, experiencing almost no congestion and maintaining a stable,

high cwnd value. Thus, the faulty server’s cwnd is asymmetric w.r.t. the other servers, mistakenly

indicating a network-related fault instead of a disk-busy fault.

We can address this by assigning greater weight to storage-metric anomalies over network-

metric anomalies in our root-cause analysis (§ 4.6.2). With Lustre’s client read-ahead, read calls

are not as synchronized across clients, and this influence does not manifest as severely.
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Metadata-Request Heterogeneity. Our peer-similarity hypothesis does not apply to PVFS meta-

data servers. Specifically, since each PVFS directory entry is stored in a single server, server re-

quests are unbalanced during path lookups, e.g., the server containing the directory “/” is involved

in nearly all lookups, becoming a bottleneck.

We address this heterogeneity by training on the postmark metadata-heavy workload. Un-

balanced metadata requests create a spread in network-throughput metrics for each server (see

Figure 4.9) , contributing to a larger training threshold. If the request imbalance is significant, the

resulting large threshold for network-throughput metrics will mask nearly all network-hog faults.

Buried ACKs. Read/write-network-hogs induce deviations in both receive and send network-

throughput due to the network-hog’s payload and associated acknowledgments. Since network-hog

ACK packets are smaller than data packets, they can easily be “buried” in the network-throughput

due to large-I/O traffic. Thus, network-hogs can appear to influence only one of rxbyt or txbyt,

for read or write workloads, respectively.

rxpck and txpck metrics are immune to this effect, and can be used as alternatives for

rxbyt and txbyt for network-hog diagnosis. Unfortunately, the non-homogeneous nature of

metadata operations (in particular, postmark) result in rxpck/txpck fault manifestations being

masked in most circumstances.

Delayed ACKs. In contradiction to Observation 5, a receive-(send-) packet-loss fault during a

large-write (large-read) workload can cause a steady send (receive) network throughput on the

faulty node and asymmetric decreases on non-faulty nodes (see Figure 4.10). Since the send (re-

ceive) throughput is almost entirely comprised of ACKs, this phenomenon is the result of delayed

ACK behavior.

Delayed ACKs reduce ACK traffic by acknowledging every other packet when packets are

received in order, effectively halving the amount of ACK traffic that would otherwise be needed

to acknowledge packets 1:1. During packet-loss, each out-of-order packet is acknowledged 1:1

resulting in an effective doubling of send (receive) throughput on the faulty server as compared to
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Figure 4.10: Receive packet-loss influence on faulty server’s txbyt (ACKs) for ddw workload.

non-faulty nodes. Since the packet-loss fault itself results in, approximately, a halving of through-

put, the overall behavior is a steady or slight increase in send (receive) throughput on the faulty

node during the fault period.

Network-Metric Diagnosis Ambiguity. A single network metric is insufficient for diagnosis of

network faults because of three properties of network throughput and congestion. First, write-

network-hogs during write workloads create enough congestion to deviate the client cwnd; thus,

cwnd is not an exclusive indicator of a packet-loss fault. Second, delayed ACKs contribute to

packet-loss faults manifesting as network-throughput deviations, on rxbyt or txbyt; thus, the

absence of a throughput deviation in the presence of a cwnd does not sufficiently diagnose all

packet-loss faults. Third, buried ACKs contribute to network-hog faults manifesting in only one of

rxbyt and txbyt, but not both; thus, the presence of both rxbyt and txbyt deviations does

not sufficiently indicate all network-hog faults.
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Thus, we disambiguate network faults in the third root-cause analysis step as follows. If both

rxbyt and txbyt are asymmetric across servers, regardless of cwnd, a network-hog fault exists.

If either rxbyt or txbyt is asymmetric, in the absence of cwnd, a network-hog fault exists. If

cwnd is asymmetric regardless of either rxbyt or txbyt (but not both, due to the first rule

above), then a packet-loss fault exists.
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Chapter 5

Real-World Validation: Case Study

Following the promising success of our PVFS and Lustre laboratory experiments, we sought to

validate our diagnosis approach on Intrepid’s primary high-speed GPFS file system.

5.1 New Challenges

At the start of our 15-month case study of Intrepid’s storage system, we identified a set of new

challenges that our diagnosis approach would have to handle:

1. A large-scale, multi-tier storage system where problems can manifest on file servers, storage

attachments, storage controllers, and individual LUNs.

2. Heterogeneous workloads of unknown behavior and unplanned hardware-component faults,

both of which are outside of our control, that we observe and characterize as they happen.

3. The presence of system upgrades, e.g., addition of storage units that see proportionally higher

loads (non-peer behavior) as the system seeks to balance resource utilization.

4. The need for continuous, 24/7 instrumentation and analysis.

5. Redundant links and components, which also exhibit changes in load (as compared to peers)

when faults are present, even though the components themselves are operating appropriately.
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6. The presence of occasional, transient performance asymmetries that are not conclusively at-

tributable to any underlying problem or misbehavior.

5.1.1 Addressing these New Challenges

While problem diagnosis in Intrepid’s storage system is based on the same fundamental peer-

comparison process we developed during our laboratory experiments, these new challenges still

require us to adapt our approach at every level: by expanding the system model, revisiting our

instrumentation, and improving our diagnosis algorithm. Here we map our list of challenges to the

sections of this thesis where we address them.

Challenge #2. Tolerating heterogeneous workloads and unplanned faults are inherent features

of our peer-comparison approach to problem diagnosis. We assume that client workloads exhibit

similar request patterns across all storage components, which is a feature provided by parallel file

system data striping for all but pathological cases. We also assume that at least half of the storage

components (within a peer group) exhibit fault-free behavior. As long as these assumptions hold,

our peer-comparison approach can already distinguish problems from legitimate workloads.

Challenges #1, #3, and #5. Unlike our test-bench clusters, which consisted of a single storage

component type (PVFS or Lustre file server with a local storage disk), Intrepid’s storage system

consists of multiple component types (file servers, storage controllers, disk arrays, attachments,

etc.), that may be amended or upgraded over time, and that serve in redundant capacities. Thus, we

are required to adapt our system model to tolerate each of these features. Since we collect instru-

mentation data on file servers (see § 3.2.1), we use LUN-server attachments as our fundamental

component for analysis. With knowledge of GPFS’s prioritization of attachments for shared stor-

age (see § 5.2.2), we handle redundant components (challenge #5) by separating attachments into

different priority groups that are separately analyzed. We handle upgrades (challenge #3) similarly,

separating components into different sets based on the time at which they’re added to the system,
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and perform localization separately within each upgrade set (see § 5.2.1). Furthermore, by know-

ing which attachments are affected at the same time, along with the storage system topology (see

§ 5.2), we can infer the most likely tier and component affected by a problem (challenge #1).

Challenge #4. As in our laboratory experiments we use sadc to collect performance metrics

(see § 3.2.1). To make our use of sadc amenable to continuous instrumentation, we also use a

custom daemon, cycle, to rotate sadc’s activity files once a day (see § 3.2.2). This enables us

to perform analysis on the previous day’s activity files while sadc generates new files for the next

day.

Challenge #6. Transient performance asymmetries are far more common during the continu-

ous operation of large-scale storage systems, as compared to our short laboratory experiments.

Treatment of these transient asymmetries requires altering the focus of our analysis efforts and

enhancing our localization algorithm to use persistence ordering (see § 3.4).

5.2 Intrepid’s Storage System

The target of our case study is Intrepid’s primary storage system, a GPFS file system that, as illus-

trated in Figure 5.1, consists of 128 Network Shared Disk (NSD) servers (fs1 through fs128)

and 16 DataDirect Networks S2A9900 storage arrays, each with two storage controllers [41]. As il-

lustrated in Figure 5.2, each storage array exports 72 LUNs (ddn6_lun000 through ddn21_lun071)

for Intrepid’s GPFS file system, yielding a 4.5 PB file system comprised from 1152 LUNs and

11,520 total disks. At this size, this storage system demands a diagnosis approach with scal-

able data volume and an algorithm efficient enough to perform analysis in real-time with modest

hardware. In addition, because our focus is on techniques that are amenable to such production

environments, we require an approach with a low instrumentation overhead.
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BG/P I/O Nodes

Ethernet LAN

128 NSD Servers

IB Attachments

1152 LUNs

Storage Array (1 of 16)

Figure 5.1: Intrepid’s storage system architecture.

5.2.1 System Expansion

Of the 72 LUNs exported by each storage array, 48 were part of the original storage system deploy-

ment, while the other 24 were added concurrently with the start of our instrumentation to expand

the system’s capacity. Since the 24 LUNs added in each storage array (384 LUNs total) were

initially empty, they observe fewer reads and more writes, and thus, exhibit non-peer behavior

compared to the original 48 LUNs in each array (768 LUNs total). As our peer-comparison di-

agnosis approach performs best on LUNs with similar workloads, we partition Intrepid into “old”

and “new” LUN sets, consisting of 768 and 384 LUNs respectively, and perform our localization

separately within each set.
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5.2.2 Shared Storage

Each Intrepid LUN is redundantly attached to eight GPFS file servers with a prioritized server

ordering defined in a system-wide configuration. We denote these LUN-server attachments with

the convention controller.lun.server, e.g., 6.00.1 or 21.71.128.

GPFS clients, when accessing a LUN, will route all I/O requests through the highest-priority,

presently-available server defined for that LUN. Thus, when all servers are online, client I/O re-

quests route through the primary server defined for a given LUN. If the primary server is unavail-

able, requests route through the LUN’s secondary, tertiary, etc., servers based on those servers

availability.

Since redundant attachments do not have equal priority for a given LUN, this effectively cre-

ates eight system-wide priority groups consisting of equal-priority LUN-server attachments, i.e.,

the first priority-group consists of all primary LUN-server attachments, the second priority-group

consists of all the secondary LUN-server attachments, etc. Combined with the “system expansion”

division, the total of 9216 LUN-server attachments (1152 LUNs× 8 redundantly attached servers)

must be analyzed in 16 different peer groups (8 priority groups × 2 for “old” vs. “new” LUNs) in

total.

5.3 Peer-Comparison Algorithm Refinements

In § 3.3, we describe the revised version of our peer-comparison algorithm, which, in conjunction

with persistence ordering forms the core of our problem-diagnosis approach for Intrepid’s storage

system. Here, we detail the differences between the two versions of our peer-comparison algorithm

and motivate the specific revisions made to it.

A peer-comparison algorithm requires the use of some measure that captures the similarity

and the dissimilarity in the respective behaviors of peer components. A good measure, from a

diagnosis viewpoint, is one that captures the differences between a faulty component and its non-

faulty peer in a statistically significant way. In our explorations with Intrepid, we have sought to
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use robust similarity/dissimilarity measures that are improvements over the ones that we used in

our laboratory experiments (§ 4.6).

The first of these improvements is the method of histogram-bin selection. In § 3.3, we used

Sturges’ rule [56] to base the number of histogram bins on WinSize. Under both faulty and fault-

free scenarios (particularly where a LUN exhibits a small asymmetry), Sturges’ rule creates his-

tograms where all data is contained in the first and last bins. Thus, the amount of asymmetry of

a specific LUN relative to the variance of all LUNs is lost and not represented in the histogram.

In contrast, the Freedman–Diaconis rule selects bin size as a function of the interquartile range

(IQR), a robust measure of variance uninfluenced by a small number of outliers. Thus, the number

of bins in each histogram adapts to ensure an accurate histogram representation of asymmetries

that exceeds natural variance.

One notable concern of the Freedman–Diaconis rule is the lack of a limit on the number of

bins. Should a metric include outliers that are orders of magnitude larger than the IQR, then, the

Freedman–Diaconis rule will generate infeasibly large histograms, which is problematic as the

analysis time and memory requirements both scale linearly with the number of bins. While we

found this to not typically be an issue with the await metric, wr_sec outliers would (attempt)

to generate histograms with more than 18 million bins. For diagnosis on Intrepid’s storage system,

we use a bin limit of 1000, which is the 99th, 91st, and 87th percentiles for await, rd_sec,

and wr_sec respectively, and results in a worst-case (all generated with 1000 bins) histogram-

computation time that is only twice the average.

The second improvement of this algorithm is its use of CDF distances as a similarity/dissimilarity

measure, instead of the Probability Density Functions (PDFs) distances as we used in our labora-

tory experiments. Specifically, in § 3.3, we used a symmetric version of Kullback-Leibler (KL)

divergence [14] to compute distance using histogram approximations of metric PDFs. This com-

parison works well when two histograms overlap (i.e., many of their data points lie in overlapping

bins). However, where two histograms are entirely non-overlapping (i.e., their data points lie en-

tirely in non-overlapping bins in distinct regions of their PDFs), the KL divergence does not include
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Feature Test Bench Intrepid Rationale

Separating up-
graded components

7 3

Tolerates weighted I/O on recently
added storage capacity; addresses
challenge #3.

Fundamental com-
ponent for analysis

LUNs LUN-server attachments

Provides views of LUN utilization
across redundant components; im-
proves problem localization; ad-
dresses challenges #1 and #5.

cycle daemon 7 3

Enables continuous instrumenta-
tion with sadc; addresses chal-
lenge #4.

Downsampling 7 1 s→ 15 s
Tolerates intermittent data, reduces
resource requirements; addresses
challenge #1.

Histogram bin
selection

Sturges’ rule Freedman–Diaconis rule
Provides accurate representation
of asymmetries; improves diag-
nostic accuracy.

Distance metric KL Divergence (PDF) Cumulative Distance (CDF)
Accurate distance for non-
overlapping histograms; improves
diagnostic accuracy.

Persistence
Ordering

7 3

Highlight components with long-
term problems; addresses chal-
lenge #6.

Table 5.1: Improvements to diagnosis approach as compared to first version (§ 3.3).

a measure of the distance between non-zero PDF regions. In contrast, the distance between two

metric CDFs does measure the distance between the non-zero PDF regions, which captures the

degree of the LUN’s asymmetry.

5.4 Revisiting our Challenges

Table 5.1 provides a summary of the changes to our approach as we moved from our test-bench

environment to performing problem diagnosis in a large-scale storage system. This combination of

changes both adequately addresses the challenges of targeting Intrepid’s storage system, and also

improves the underlying algorithm.
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Analysis Step Runtime Memory
Extract activity file contents (dump) 1.8 h < 10 MB
Downsample and tabulate metrics (table) 7.1 h 1.1 GB
Anomaly Detection (diagprep) 49 m 6.1 GB
Persistence Ordering (diagnose) 1.6 s 36 MB
Total 9.7 h 6.1 GB

Table 5.2: Resources used in analysis of await, for the first four peer groups of the 2011-05-09
data set.

5.5 Analysis Resource Requirements

In this section, we discuss the resources (data volume, computation time, and memory) require-

ments for the analysis of Intrepid’s storage system.

Data Volume. The activity files generated by sadc at a sampling interval of 1 s, when com-

pressed with xz [13] at preset level -1, generate a data volume of approximately 10 MB per file

server, per day. The median-size data set (for the day 2011-05-09) has a total (includes all file

servers) compressed size of 1.3 GB. In total, we have collected 624 GB in data sets for 474 days.

Runtime. We perform our analysis offline, on a separate cluster consisting of 2.4 GHz dual-core

AMD Opteron 1220 machines, each with 4 GB RAM. Table 5.2 lists our analysis runtime for the

await metric, when utilizing a single 2.4 GHz Opteron core, for each step of our analysis for the

first four peer groups of the median-size data set. Because each data set (consisting of 24 hours of

instrumentation data) takes approximately 9.7 h to analyze, we are able to keep up with data input.

We note that the two steps of our analysis that dominate runtime—extracting activity file con-

tents (which is performed on all metrics at once), and downsampling and tabulation of metrics

(includes await only)—take long due to our sampling at a 1 s interval. We use the 1 s sample rate

for archival purposes, as it is the highest sample rate sadc supports. However, we could sample

at a 15 s rate directly and forgo the downsampling process, which reduces the extraction time in

Table 5.2 by a factor of 15 and tabulation time to 31 m, yielding a total runtime of approximately

1.4h.
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Algorithm Scalability. Our CDF distances are generated through the pairwise comparison of

histograms is O(n2) where n is the number of LUNs in each peer group. Because our four peer

groups consist of two sets of 768 and 384 LUNs, and our CDF distances are symmetric, we must

perform a total of 736,128 histogram comparisons for each analysis window. In practice, we find

that our CDF distances are generated quickly, as illustrated by our Anomaly Detection runtime of

49 m for 192 analysis windows (24 hours of data). Thus, we do not see our pairwise algorithm

to be an immediate threat to scalability in terms of analysis runtime. In § 4.7.1, we proposed an

alternative approach to enable O(n) scalability, but found it unnecessary for use in Intrepid.

Memory Utilization. Table 5.2 also lists the maximum amount of memory used by each step

of our analysis. We use the analysis process’ Resident Set Size (RSS) plus any additional used

swap memory to determine memory utilization. The most memory-intensive step of our analysis

is Anomaly Detection. Our static memory costs come from the need to store the tabulated raw

metrics, moving-average-filtered metrics, and a mapping of LUNs to CDF distances, each of which

uses 101 MB of memory. Within each analysis window, we must generate histograms for each

of the 2,304 LUNs in all four of our peer groups. With a maximum of 1000 bins, all of the

histograms occupy at most 8.8 MB of memory. We also generate 736,128 CDF distances, which

occupy 2.8 MB per window. However, we must maintain the CDF distances across all 192 analysis

windows for a given 24-hour data set, comprising a total of 539 MB. Using R’s [46] default garbage

collection parameters, we find that the steady-state memory use while generating CDF distances

to be 1.1 GB. The maximum use of 6.1 GB is transient, happening at the very end when our CDF

distances are written out to file. With these memory requirements, we are able to analyze two

metrics simultaneously on each of our dual-core machines with 4 GB RAM, using swap memory

to back the additional 2–4 GB when writing CDF distances to file.

Diagnosis Latency. Our minimum diagnosis latency, that is, the time from the incident of an

event to the time of its earliest report as an anomaly is 22.5 minutes. This figure is derived from

our (i) performing analysis at a sampling interval of 15 s, (ii) analyzing in time windows shifted
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by 30 samples, and (iii) requiring that 3 out of the past 5 windows exhibits anomalous behavior

before reporting the LUN itself as anomalous:

15 s/samples×30 samples/window×3windows = 22.5m

This latency is an acceptable figure for a few reasons:

• As a tool to diagnose component-level problems when a system is otherwise performing cor-

rectly (although, perhaps at suboptimal performance and reduced availability), the system con-

tinues to operate usefully during the diagnosis period. Reductions in performance are generally

tolerable until a problem can be resolved.

• This latency improves upon current practice in Intrepid’s storage system, e.g., four-hour auto-

mated checks of storage controller availability and daily manual checks of controller logs for

misbehavior.

• Gabel et al. [20], which targets a similar problem of finding component-level issues before they

grow into full-system failures, uses a diagnosis interval of 24 hours, and thus, considers this

latency an acceptable figure.

In circumstances where our diagnosis latency would be unacceptably long, lowering the con-

figurable parameters (sample interval, WinShi f t, and Anomaly Filtering’s k value) will reduce

latency with a potential for increased reports of spurious anomalies, which itself may be an accept-

able consequence if there is external indication that a problem exists, for which we may assist in

localization. In general, systems that are sensitive to diagnosis latency may benefit from combining

our approach with problem-specific ones (e.g., heartbeats, SLAs, threshold limits, and component-

specific monitoring) so as to complement each other in problem coverage.
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Date.Hour: Value PG:LUN-server
20110417.00: 7 2:18.61.102 6 2:15.65.74 5 2:11.55.48 5 2:12.48.49
20110417.01: 14 2:15.65.74 9 2:16.51.84 8 1:6.39.8 8 1:10.03.36
20110417.02: 19 2:15.65.74 17 2:16.51.84 15 2:10.50.35 15 2:21.56.121
20110417.03: 25 2:16.51.84 15 2:15.65.74 14 2:21.56.121 13 2:10.50.35
20110417.04: 33 2:16.51.84 20 2:15.65.74 15 2:21.56.121 13 2:10.50.35
20110417.05: 41 2:16.51.84 22 2:15.65.74 13 2:19.53.110 10 1:16.30.87

Figure 5.3: Example list of persistently anomalous LUNs. Each hour (row) specifies the most
persistent anomalies (columns of accumulator value, peer-group, and LUN-server designation),
ordered by decreasing accumulator value.

5.6 Evaluation of Case Study

Having migrated our analysis approach to meeting the challenges of problem diagnosis on a large-

scale system, we perform a case study of Intrepid over a 474-day period from April 13th, 2011

through July 31st, 2012. We use the second day (April 14th, 2011) as our only “training day” for

threshold selection.

In this study we analyze both “old” and “new” LUN sets, for the first two LUN-server attach-

ment priority groups. This enables us to observe “lost attachment” faults both with zero/missing

data from the lost attachment with the primary file server (priority group 1), and with the new, non-

peer workload on the attachment with the secondary file server (priority group 2). We note that,

although we do not explicitly study priority groups 3–8, we have observed sufficient file server

faults to require use of tertiary and subsequent file server attachments.

5.6.1 Method of Evaluation

After collecting instrumentation data from Intrepid’s file servers, we perform our problem local-

ization (consisting of anomaly detection and persistence ordering as described in § 3.3 and § 3.4

respectively) on the await metric, generating a list of the top 100 persistently anomalous LUNs

for each hour of the study. See Figure 5.3 for an example list.

In generating this list, we use a feedback mechanism that approximates the behavior of an

operator using this system in real-time. For every period, we consider the top-most persistent

anomaly, and if it has sufficient persistence (e.g., an accumulator value in excess of 100, which
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indicates that the anomaly has been present for at least half a day, but lower values may be accepted

given other contextual factors such as multiple LUNs on the same controller exhibiting anomalies

simultaneously), then, we investigate that LUN’s instrumentation data and storage-controller logs

to determine if there is an outstanding performance problem on the LUN, its storage controller,

file-server attachments, or attached file servers.

At the time that a problem is remedied (which we determine through instrumentation data and

logs, but would be recorded by an operator after performing the restorative operation), we zero the

accumulator for the affected LUN to avoid masking subsequent problems during the anomaly’s

“wind-down” time (the time during which the algorithm would continually subtract one from the

former anomaly’s accumulated value until zero is reached). For anomalies that persist for more

than a few days before being repaired, we regenerate the persistent-anomaly list with the affected

LUNs removed from the list, and check for additional anomalies that indicate a second problem

exists concurrently. If a second problem does exist, we repeat this process.

5.7 Observed Incidents

Using our diagnosis approach, we have uncovered a variety of issues that manifested on Intrepid’s

storage system performance metrics (and that, therefore, we suspect to be performance problems).

Our uncovering of these issues was done through our independent analysis of the instrumenta-

tion data, with subsequent corroboration of the incident with system logs, operators, and manual

inspection of raw metrics. We have grouped these incidents into three categories.

5.7.1 Lost Attachments

We use the lost attachments category to describe any problem whereby a file server no longer routes

I/O for a particular LUN, i.e., the attachment between that LUN-server pair is “lost”. Of particular

concern are lost primary (or highest priority) attachments as it forces clients to reroute I/O through

the secondary file server, which then sees a doubling of its workload. Lost attachments of other
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Diagnosis Recovery
Incident Time Latency Latency Device Description

2011-07-14 00:00 1.0 h 25.8 d ddn19a
Controller failed on reboot; missing data on
19.00.105.

2011-08-01 19:00 17.0 h 8.9 d fs16
File server down; observed load on sec-
ondary (fs9).

2011-08-15 07:31 29 m 16.5 d fs24
File server down; observed load on sec-
ondary (fs17).

2011-09-05 03:23 8.6 h 18.5 d ddn20b
Controller manually failed; missing data on
20.00.117.

2011-09-11 03:22 11.6 h 35.6 h fs25
File server down; observed load on sec-
ondary (fs26).

2011-10-03 03:09 12.9 h 42.5 d ddn11a
Controller failed on reboot; observed load
on secondary (fs41).

2011-10-17 16:57 22.1 h 28.0 d ddn12a,20a,21a
Controllers manually failed; observed loads
on secondaries (fs53,115,125).

2012-06-14 22:26 7.6 h 3.9 d ddn8a
Controller manually failed; observed load
on secondary (fs20).

Table 5.3: Storage controller failures and down file server lost attachment events.

priorities may still be significant events, but they are not necessarily performance impacting as they

are infrequently used for I/O. We observe four general problems that result in lost attachments:

(i) failed (or simply unavailable) file servers, (ii) failed storage controllers, (iii) misconfigured

components, and (iv) temporary “bad state” problems that usually resolve themselves on reboot.

Failed Events. Table 5.3 lists the observed down file-server and failed storage-controller events.

The incident time is the time at which a problem is observed in instrumentation data or controller

logs. Diagnosis latency is the elapsed time between incident time and when we identify the prob-

lem using our method of evaluation (see § 5.6.1). Recovery latency is the elapsed time between

incident time and when our analysis observes the problems to be recovered by Intrepid’s operators.

Device is the component in the system that is physically closest to the origin of the problem, while

the incident’s observed manifestation is described in description. In particular, “missing data”

refers to instrumentation data no longer being available for the specified LUN-server attachment

due to the disappearance of the LUN’s block device on that file server, while a “0” value means

the block device is still present, but not utilized for I/O.

The lengthy recovery latency for each of these failed events is due to the fact that all (except

for fs25) required hardware replacements to be performed, usually during Intrepid’s biweekly
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Diagnosis Recovery
Incident Time Latency Latency Device Description

2011-05-18 00:21 39 m 49.9 d fs49,50,53,54

Extremely high await (up to 103 s) due to
ddn12 resetting all LUNs, results in GPFS
timeouts when accessing some LUNs, which
remain unavailable until the affected file
servers are rebooted; observed “0” await
on 12.48.49.

2011-08-08 19:36 8.4 h 21.9 h ddn19a

Servers unable to access some or all LUNs
due to controller misconfiguration (disabled
cache coherency); observed “0” await on
19.50.107.

2011-11-14 19:41 7.6 h 3.9 d ddn14,18

Cache coherency fails to establish between
coupled controllers after reboot, restricting
LUN availability to servers; missing data on
14.41.67 and 18.37.103.

2012-03-05 17:50 3.2 h 4.2 d fs56
GPFS service not available after file server
reboot, unknown reason; observed loads on
secondary (fs49).

2012-05-10 03:00 9.0 h 4.7 d ddn16b
LUNs inaccessible from fs84,88, un-
known reason; fixed on controller reboot;
missing data on 16.59.84.

2012-06-13 03:00 3.0 h 8.7 d ddn11a
LUNs inaccessible from fs42,45,46, un-
known reason; missing data on 11.69.46.

Table 5.4: Misconfigured component and temporary “bad state” lost attachment events.

maintenance window, and perhaps even after consultation and troubleshooting of the component

with its vendor. At present, Intrepid’s operators discover these problems with syslog monitoring

(for file servers) and by polling storage-controller status every four hours. Our diagnosis latency

is high for file-server issues as we depend on the presence of a workload to localize traffic to the

secondary attachment. Normally these issues would be observed sooner through missing values,

except the instrumentation data itself comes from the down file server, and so, is missing in its

entirety at the time of the problem (although the missing instrumentation data is a trivial sign

that the file server is not in operation). In general, failed events, although they can be diagnosed

independently, are important for analysis because they are among the longest-duration, numerous-

LUN-impacting problems observed in the system.

Misconfiguration and Bad-State Events. Table 5.4 lists the observed misconfiguration and tem-

porary “bad state” events that result in lost attachments. We explain the two cache-coherency

events as follows: Each storage array consists of two coupled storage-controllers, each attached

69



to four different file servers, and both of which are able to provide access to attached disk arrays

in the event of one controller’s failure. However, when both controllers are in healthy operation,

they may run in either cache-coherent or non-coherent modes. In cache-coherent mode, all LUNs

may be accessed by both controllers (and thus, all eight file servers) simultaneously, as they are

expected to by the GPFS-cluster configuration. However, should the controllers enter non-coherent

mode (due to misconfiguration or a previous controller problem), then they can only access arrays

“owned” by the respective controller, restricting four of the eight file servers from accessing some

subset of the controllers’ LUNs.

Cascaded Failure. The most interesting example in the “bad state” events is the GPFS timeouts

of May 18th, 2011, a cascaded failure that went unnoticed by Intrepid operators for some time.

Until the time of the incident, the ddn12 controllers were suffering from multiple, frequent disk

issues (e.g., I/O timeouts) when the controller performed 71 “LUN resets”. At this time, the con-

troller delayed responses to incoming I/O requests for up to 103 s, causing three of the file servers

to timeout their outstanding I/Os and refuse further access to the affected LUNs. Interestingly,

while the controller and LUNs remain in operation, the affected file servers continue to abandon

access for the duration of 50 days until they are rebooted, at which point the problem is resolved.

This particular issue highlights the main benefit of our holistic peer-comparison approach. By hav-

ing a complete view of the storage system, our diagnosis algorithm is able to localize problems that

otherwise escape manual debugging and purpose-specific automated troubleshooting (i.e., scripts

written to detect specific problems).

5.7.2 Drawer Errors

A drawer error is an event where a storage controller finds errors, usually I/O and “stuck link”

errors on many disks within a single disk drawer. These errors can become very frequent, occurring

every few seconds, adding considerable jitter to I/O operations (see Figure 5.4). Table 5.5 lists

four observed instance of drawer errors, which are fairly similar in their diagnosis characteristics.
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Jittery ddn12
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Figure 5.4: I/O wait time jitter experienced by ddn12 LUNs during the May 17th, 2011 drawer
error event.

Diagnosis
Incident Time Latency Duration Device Description
2011-05-17 20:30 3.5 h 3.9 h ddn12 Jittery await for 60 LUNs due to frequent “G” drawer errors.
2011-06-20 18:30 1.5 h 48.8 h ddn12 Jittery await for 37 LUNs due to frequent “G” drawer errors.
2011-09-08 02:00 12.0 h 27.0 h ddn19 Jittery await for 54 LUNs due to frequent “A” drawer errors.
2012-01-16 19:30 3.5 h 24.0 h ddn16 Jittery await for 11 LUNs due to frequent “D” drawer errors.

Table 5.5: Drawer error events.

Drawer errors are visible to operators as a series of many verbose log messages. Operators resolve

these errors by forcibly failing every disk in the drawer, rebooting the drawer, then reinserting all

the disks into their respective arrays, which are recovered quickly via journal recovery.

5.7.3 Single LUN Events

Single LUN events are instances where a single LUN exhibits considerable I/O wait time (await)

for as little as a few hours, or as long as many days. Table 5.6 lists five such events although as

71



0
2

4
6

8
10

Time (h)

I/O
 W

ai
t T

im
e 

(m
s)

0 4 8 12 16 20 24

Fault-free LUNs

Sustained wait time
21.34.124 LUN

Figure 5.5: Sustained I/O wait time experienced by 21.34.124 during the June 25th single LUN
event.

many as 40 have been observed to varying extents during our analysis.

These events can vary considerably in their behavior, and Table 5.6 provides a representative

sample. Occasionally, the event will be accompanied by one or more controller-log messages that

suggests that one or more spindles in the LUN’s disk array is failing, e.g., the June 18th event is

accompanied with a message stating that the controller recovered an “8+ 2” parity error. Single

LUN events may correspond to single-LUN workloads, and thus, would manifest in one of the

throughput metrics (rd_sec or wr_sec) in addition to await. Conversely, the June 25th event

in Table 5.6 manifests in await in the absence of an observable workload (see Figure 5.5), perhaps

suggesting that there is a load internal to the storage controller or array that causes externally-

visible delay. Unfortunately, since storage-controller logs report little on most of our single LUN

events, it is difficult to obtain a better understanding of specific causes of these events.
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Diagnosis
Incident Time Latency Duration Device Description
2011-06-18 08:00 18.0 h 10.5 d 15.37.78 Sustained above average await; recovered parity errors.
2011-08-18 20:00 26.0 h 79.0 h 19.12.109 Sustained above average await; until workload completes.
2011-09-25 04:00 20.0 h 4.3 d 11.12.45 Sustained above average await; unknown reason.
2012-04-19 12:00 38.0 h 7.2 d 9.04.29 Sustained above average await; unknown reason.
2012-06-25 16:00 8.0 h 6.6 d 21.34.124 Sustained await in absence of workload; unknown reason.

Table 5.6: Single LUN events.

5.8 Alternative Distance Measures

Our use of CDF distances as the distance measure for our peer-comparison algorithm is motivated

by its ability to capture the differences in performance metrics between a faulty component and its

non-faulty peer. Specifically, CDF distances capture asymmetries in a metric’s value (relative to

the metric’s variance across all LUNs), as well as asymmetries in a metric’s shape (i.e., a periodic

or increasing/decreasing metric vs. a flat or unchanging metric). The use of CDF distances does

require pairwise comparison of histograms, and thus, is O(n2) where n is the number of LUNs

in each peer group. While we have demonstrated that the use of pairwise comparisons is not an

immediate threat to scalability (see § 5.5), it is illustrative to compare CDF distances to alternative,

computationally-simpler, O(n) distance measures.

The two alternative distance measures we investigate are median and thresh. For both mea-

sures, we use the same Anomaly Detection and Persistence Ordering algorithms as described in

§ 3.3 and § 3.4, including all windowing, filtering, and their associated parameters. For each

time window, instead of generating histograms we use one of our alternative measures to gen-

erate, for each LUN, a scalar distance value from the set of WinSize samples. For median, we

generate a median time-series, m by computing for each sample, the median value across all

LUNs within a peer group. We then compute each LUN’s scalar distance as the sum of the dis-

tances between that LUN’s metric value x and the median value for each of the WinSize samples:

d(x,m) = ∑
WinSize
i=0 |x(i)−m(i)|. We then flag a LUN as anomalous over a window if its scalar

distance exceeds a predefined threshold, which is selected using the approach described in § 3.3.1.

We follow the same procedure for thresh, except that each LUN’s scalar “distance” value is cal-
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Event Type CDF Median Thresh
Controller failure 5 5 5
File server down 3 2 3
Misconfiguration / bad state 6 6 5
Drawer error 4 3 4
Single LUN 5+ 2 1

Table 5.7: Number of events observed with each distance measure (CDF distances, median, and
thresh).

culated simply as the maximum metric value x among the WinSize samples: d(x)=maxx(i) |WinSize
i=0 .

Here, thresh is neither truly a measure of distance, nor is it being used to perform peer-comparison.

Instead we use the thresh measure to implement the traditional “metric exceeds alarm-threshold

value” within our anomaly detection framework, i.e., an anomalous window using thresh indicates

that the metric exceeded twice the highest-observed value during the training period for at least

one sample.

Performing a meaningful comparison of the median and thresh measures against CDF distances

is challenging with production systems like Intrepid, where our evaluation involves some expert

decision making and where we lack ground-truth data. For example, while the events enumerated

in Tables 5.3–5.6 represent the most significant issues observed in our case study, we know there

exists many issues of lesser significance (especially single LUN events) that we have not enumer-

ated. Thus it is not feasible to provide traditional accuracy (true- and false-positive) rates as we

have in our laboratory experiments. Instead, we compare the ability of the median and thresh

measures to observe the set of events discovered using CDF distances (listed in Tables 5.3–5.6),

by following the evaluation procedure described in § 5.6.1 for the days during which these events

occur.

5.8.1 Comparison of Observations

Table 5.7 lists the number of we events observe with the alternative distance measures, median and

thresh, as compared to the total events observed with CDF distances. Both median and thresh mea-

sures are able to observe all five failed storage-controller events, as well as most down file-server
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and misconfiguration/“bad state” events. Each of these events are characterized by missing data on

the LUN’s primary attachment, and the appearance of a load on the LUN’s normally-unused sec-

ondary attachment. Unlike CDF distances, neither median nor thresh measures directly account for

missing data, however these events are still observed through the presence of secondary-attachment

loads. As the non-primary attachments of LUNs are rarely used, these secondary-attachment loads

are significant enough to contribute to considerable distance from the (near zero) median and to

exceed any value observed during fault-free training. Both measures are also able to observe most

drawer errors as these events exhibit considerable peak await that exceed both the median value

and the maximum-observed value during training.

Controller Misconfiguration. For the August 8th, 2011 controller misconfiguration event, a zero

await value is observed on the affected LUNs’ primary attachments for the duration of the event,

which is observed by the median measure. However, this particular event also results in zero

await on the LUNs’ secondary attachments, which are also affected, pushing the load onto the

LUNs’ tertiary attachments. As we only analyze each LUN’s first two priority groups, the load on

the tertiary attachment (and the event itself) goes unobserved. Thus, the thresh measure requires

analysis of all priority groups to locate “missing” loads that are otherwise directly observed with

peer-comparison-based measures.

Single LUN Events. Two single LUN events go unobserved by median as their manifestations

in increased await are not sufficiently higher than their medians to result in persistent anomalies.

Four of the events go unobserved by thresh as await never exceeds its maximum value observed

during training, except during the June 25th, 2012 incident on a (normally-unused) secondary

attachment where sustained await is observed in absence of a workload.
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5.8.2 Server Workloads

The remaining three events that escape observation by median (a down file-server, drawer error,

and single LUN events) are each due to the same confounding issue. As described in § 5.2.2,

shared storage is normally prioritized such that GPFS clients only use the highest-priority available

attachment. However, workloads issued by GPFS file servers themselves preferentially make use

of their own LUN attachments, regardless of priority, to avoid creating additional LAN traffic.

Thus, for server-issued workloads, we observe loads on each (e.g., 48) of the server’s attachments,

which span all priority groups, as well as loads on each (e.g., 720) of the primary attachments for

LUNs that are not directly attached to those servers. Such workloads, if significant enough, would

result in anomalies on each (e.g., 42) of the non-primary attachments.

In practice, Intrepid’s storage system does not run significant, long-running workloads on the

file servers, so this complication is usually avoided. The exception is that GPFS itself occasionally

issues very low-intensity, long-running (multiple day) workloads from an apparently-random file

server. These workloads are of such low intensity (throughput < 10 kB/s, await < 1.0 ms, both per

LUN) that their await values rarely exceed our CDF distance algorithm’s histogram BinSizes, and

thus, are regarded as noise. However, server-workload await values on non-primary attachments

do exceed the (zero) median value, and thus, do contribute to median anomalies. The result is that

the presence of a server workload during an analysis window often exhibits a greater persistence

value than actual problems, which confounds our analysis with the median measure. Thus, reliable

use of the median measure requires an additional analysis step to ignore anomalies that appear

across all attachments for a particular file server.

5.8.3 Comparison of Latencies

Table 5.8 lists the differences in diagnosis latencies for events observed with the alternative dis-

tance measures, median and thresh, as compared to the diagnosis latencies observed with CDF

distances. Negative values indicate that the alternative measure (median or thresh) observed the

event before CDF distances, while positive values indicate that the alternative measure observed
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Event Type Median (h) Thresh (h)
Controller failure −7, 0, 5, 9, 12 −10, 0, 4, 5, 9
File server down 0, 1 −8, 0, 6
Misconfiguration / bad state −8, −3, 0, 4, 6, 7 −3, −1, 0, 3, 7
Drawer error −2, −1, 5 −2, −2, −1, 0
Single LUN −5, 6 −4

Table 5.8: Differences in diagnosis latencies for events observed with alternative measures, as
compared to CDF.

the event after. Differences are indicated in integer units as our reporting for the case study is

hourly (see Figure 5.3).

With a mean 1.6 h and median 0.5 h increased latency for median, and a mean 0.2 h and median

0 h increased latency for thresh, diagnosis latency among all three distance measures are compara-

ble. However, for specific events, latencies can vary as much as twelve hours between measures,

suggesting that simultaneous use of multiple measures may be helpful to reduce overall diagnosis

latency.

5.9 Experiences and Insights

In preparing for our case study of Intrepid’s storage system, we made improvements to our diagno-

sis approach to address the challenges outlined in § 5.1. However, in the course of our instrumen-

tation and case study, we encountered a variety of pragmatic issues, and we share our experiences

and insights with them here.

Clock Synchronization. Our diagnosis algorithm requires clocks to be reasonably synchronized

across file servers so that we may peer-compare data from the same time intervals. In our laboratory

experiments, we used NTP to synchronize clocks at the start of our experiments, but disabled

the NTP daemon so as to avoid clock adjustments during the experiments themselves. Intrepid’s

file servers also run NTP daemons; however, clock adjustments can and do happen during our

sadc instrumentation. This results in occasional “missing” data samples where the clock adjusts

forward, or the occasional “repeat” sample where the clock adjusts backwards. When tabulating
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data for analysis, we represent missing samples with R’s NA (missing) value, and repeated samples

are overwritten with the latest recorded in the activity file. In general, our diagnosis is insensitive

to minor clock adjustments and other delays that may result in missing samples, but it is a situation

we initially encountered in our table script.

Discussion on Timestamps. Our activity files are recorded with filenames containing a modi-

fied1 ISO 8601-formatted [39]2 UTC timestamp that corresponds to the time of the first recorded

sample in the file. For example, fs1-20110509T000005Z.sa.xz is the activity file collected

from file server fs1, with the first sample recorded at 00:00:05 UTC on 2011-05-09. In general,

we recommend the use of ISO 8601-formatted UTC timestamps for filenames and logging where

possible, as they provide the following benefits:

• Human readable (as opposed to Unix time).

• Ensures lexicographical sorting (e.g., of activity files) preserves the chronological order (of

records).

• Contains no whitespace, so is easily read as a field by awk, R’s read.table, etc.

• Encodes time zone as a numeric offset; “Z” for UTC.

With regard to time zones, ISO 8601’s explicit encoding of them is particularly helpful in

avoiding surprises when interpreting timestamps. It is an obvious problem if some components

of a system report different time zones than others without expressing their respective zones in

timestamps. However, even when all components use the same time zone (as Intrepid uses UTC),

offline analysis may use timestamp parsing routines that interpret timestamps without an explicit

time-zone designation in the local time zone of the analysis machine (which, in our case, is US

Eastern).
1We remove colons to ensure compatibility with file systems that use colons as path separators.
2RFC 3339 is an “Internet profile of the ISO 8601 standard,” that we cite due to its free availability and applicability

to computer systems.
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A more troubling problem with implicit time zones is that any timestamp recorded during the

“repeating” hour of transition from daylight savings time to standard time (e.g., 1 am CDT to 1 am

CST) are ambiguous. Although this problem happens only once a year, it causes difficulty in corre-

lating anomalies observed during this hour with event logs from system components that lack time

zone designations. Alternatively, when when components do encode time zones in timestamps,

ISO 8601’s use of numeric offsets makes it easy to convert between time zones without needing to

consult a time zone database to locate the policies (e.g, daylight savings transition dates) behind

time-zone abbreviations.

In summary, ISO 8601 enables easy handling of human readable timestamps without having to

work-around edge cases inevitable when performing continuous instrumentation and monitoring of

system activity. “Seconds elapsed since epoch” time (e.g., Unix time) works well as a non-human

readable alternative as long as the epoch is unambiguous. sadc records timestamps in Unix time,

and we have had no trouble with them.

Absence of Data. One of the surprising outcomes of our case study is that the absence of, or

“missing data” where it is otherwise expected among its peers, is the primary indication of prob-

lem in five (seven if also including “0” data) of the studied events. This result reflects on the

effectiveness of peer-comparison approaches for problem diagnosis as they highlight differences

in behavior across components. In contrast, approaches that rely on thresholding of raw metric

values may not indicate that problems were present in these scenarios.

Separation of Instrumentation from Analysis. Our diagnosis for Intrepid’s storage system con-

sists of simple, online instrumentation, in conjunction with more complex, offline analysis. We

have found this separation of online instrumentation and offline analysis to be beneficial in our

transition to Intrepid. Our instrumentation, consisting of a well-known daemon (sadc), and a

small, C-language auditable tool (cycle), have few external dependencies and negligible over-

head, both of which are important properties to operators considering deployment on a production

system. In contrast, our analysis has significant resource requirements and external dependencies
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(e.g., the R language runtime and associated libraries), and so is better suited to run on a dedicated

machine isolated from the rest of the system. We find that this separation provides an appropriate

balance in stability of instrumentation and flexibility in analysis, such that, as we consider “near

real-time” diagnosis on Intrepid’s storage system, we prefer to maintain the existing design instead

of moving to a full-online approach.
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Chapter 6

Lessons Learned

We have acquired a number of experiences and “lessons learned” during our exploration of black-

box problem diagnosis in parallel file systems. We describe these experiences, as they’ve pertained

to our laboratory experiments and case study of Intrepid’s storage system in § 4.8 and § 5.9 respec-

tively. In this chapter, we share additional experiences and lessons learned throughout our research

of parallel file systems as a whole.

6.1 Non-Peer Behaviors

The test-bench clusters we used in our laboratory experiments consisted of up to 12 PVFS or

Lustre file servers with a single LUN each, and our workloads (dd and IOzone specifically) were

I/O bound, pushing our storage hardware throughput to its capacity. In this scenario we witnessed

two peculiarities that resulted in observable non-peer behavior, even in the fault-free case, that we

had to account for in our experiments.

6.1.1 Disk Saturation

Disk saturation occurs when incoming I/O requests arrive faster than the disk can service them,

which results in queuing of backlogged requests and response delays. The most immediate indica-
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tion of disk saturation is when %util is at or near 100%. Secondary indications are avgqu-sz

increasing into the 10s or 100s range, and a significant increase in await as compared to svctm

(queuing delay).

For systems or workloads where disks are not (or cannot) be saturated by normal usage, disk

saturation is a good indicator of disk-hog/busy conditions. However, many applications and cluster

configurations do cause disk saturation for normal workloads. Ideally, disk saturation would occur

at the same time across all servers, minimizing peer-asymmetry despite value changes across many

metrics. Unfortunately, due to slight differences in device performance characteristics (even among

homogeneous hardware), a single disk often reaches saturation before the others; in such cases, that

disk tends to remain saturated while the await of other disks backoff, creating a bottlenecking

condition even in the fault-free scenario, effectively mimicking a disk-busy fault on that node

despite no increase in workload (see Observation 6 in § 4.2). An example of this behavior is the

single elevated await (purple line) in Figure 4.3 both before and after the fault period. Thus,

we need to distinguish disk-busy faults from normal saturation by the magnitude of the impact

(deviation in await), and capture that detail as part of our threshold selection (§ 4.6.1).

6.1.2 Buffer Cache

We discovered that the behavior of the Linux buffer cache confounds disk metrics for PVFS write

workloads. The modal behavior of the buffer cache greatly influences disk operation despite only

minor differences in node state and nearly identical client requests. [54] describes the behavior of

the Linux buffer cache which is simplified here to a model with three modes.

In periodic-write mode, write requests are committed to the Linux buffer cache as dirty pages

which remain in the cache until they expire, typically after 30 seconds. A pdflush thread wake

up periodically, typically every 5 seconds, to write pages that have recently expired. Thus, disk

throughput consists of a periodic aggregated write profile.

In background-write mode, write requests are received with sufficient rate such that a threshold

quantity (dirty_background_ratio—typically 10%) of active memory fills with dirty pages
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before they expire. Once this threshold is reached, a pdflush thread writes a sufficient quantity

of unexpired pages to reduce the number of dirty pages below this threshold again. For a steady

flow of incoming write requests, this results in a steady state background write behavior where

pages are written to disk with the same average throughput as incoming requests.

In foreground-write mode, write requests are received at a rate that exceeds that which pdflush

can write out in background mode. Once the quantity of surplus pages in the buffer cache exceeds

dirty_ratio (typically 40%) of active memory, Linux then forces user processes to commit

dirty pages directly to disk, blocking any process that attempts to write to the disk until this is

done.

Disk performance metrics tends to be similar across nodes as long as all nodes are within

periodic or background write modes. However, if nodes are operating in different modes, metrics

may deviate if one or more of the nodes is in foreground write mode and the corresponding disks

are saturated. Even if all nodes are performing foreground writes, the disk performance metrics

may still vary significantly depending on the contents of the cache and the number of queued

requests, both of which are dependent on the time at which the foreground write threshold is

reached, which itself is a function of node memory and underlying device performance.

The buffer cache negatively influences recovery time due to lingering manifestations even after

a fault has been removed. Under a disk-hog or disk-busy fault that results in disk saturation on

the faulty node and a buildup of dirty pages, once the fault is removed it may take time to flush

the expired dirty pages and this extra recovery workload may carry seek penalties that delays write

performance as compared to fault-free nodes.

Thus, we avoid the use of the buffer cache when monitoring performance of PVFS as part of

our experimental set-up (§ 4.4). Specifically, introduced in PVFS 2.8.0 is a Direct I/O storage

method, which we use to bypass the buffer cache while providing improved performance for high-

bandwidth writes. In contrast, Lustre, which uses both client and server side caching, did not

exhibit the same behavior.
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6.1.3 GPFS Metadata Management

In GPFS we have witnessed non-peer behavior when processes running on the file servers them-

selves issue I/O requests to the underlying storage LUNs. As we described in § 5.8.2, I/O re-

quests issued by file servers preferentially use their own LUN attachments for any directly-attached

LUNs, regardless of the configured NSD server priority. Although we do not know the specific

cause of the workloads observed in § 5.8.2, we do know that GPFS centrally manages file system

metadata [49] (e.g., inode and indirect block updates through dynamically elected per-file metan-

odes; and configuration, usage quotas, access control lists, and extended attributes through a central

manager). Thus, I/O requests for metadata updates can be made from a different NSD server, and

thus, a different storage pathway, than data block requests made by clients.

6.2 Problem Diagnosis at Different Scales

In § 5.1, we discuss and address the challenges of making problem diagnosis work in large-scale

environments. While some of the challenges were expected (problems manifesting in different

components, heterogeneous workloads, and the need for 24/7 instrumentation) there were both

challenges we expected to face, but didn’t, as well as challenges that surprised us.

6.2.1 Sustained Non-Peer Behaviors

For our laboratory experiments, the sustained non-peer behavior we witnessed was a result of run-

ning I/O bound workloads and saturating our storage throughput capacity, particularly in a small

scale cluster. Expecting that this non-peer behavior would be present (if not more prominent) in

large scale systems, we spent considerable effort testing these scenarios to ensure our problem

diagnosis could accommodate these behaviors and avoid false alarms. However, in practice, we

observed that Intrepid’s storage system had sufficient (if not much greater) storage throughput ca-

pacity for which the day-to-day workloads made use, and sustained (non-faulty) non-peer behavior

was uncommon.
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At different times this could be a function of the (i) overall system not running at capacity, (ii)

locally inefficient I/O operations at compute nodes (thus, bottlenecking I/O before they reach the

storage system), or (iii) the provisioning of the storage system as being (slightly more) limited in

network throughput versus storage throughput. In general, one of the goals of provisioning large

storage systems is to balance the local-area and storage network capacities to avoid the bottleneck-

ing conditions that we observed in our laboratory experiments. Thus, we simply did not have as

much trouble with what we expected to be sources of non-peer behavior in our case-study investi-

gation. If did have trouble with sustained non-peer behavior, we expect we would have to retrain

regularly to quiesce sustained, but non-faulty anomalies.

6.2.2 Transient Performance Asymmetries

Conversely, one of the challenges that we did not expect was the regular presence of transient per-

formance asymmetries, which motivated the development of our persistence ordering algorithm

(§ 3.4). Essentially, within a given time window, one or more components (although, generally

not more than ten) would indicate anomalous behavior. However, on a per-component basis, these

anomalies would not persist across many time windows (again, generally not more than ten win-

dows). When we first observed these anomalies, our thought was to tweak the anomaly detection

parameters (e.g., filter width, WinSize and WinShi f t, etc.) in order to suppress them. However,

such tuning is not sustainable, and we did observe the underlying asymmetries through manual

inspection of plots of the await metric. Thus, our anomaly detection was essentially accurate,

but not immediately helpful to operators without further guidance of when to investigate alarms.

If nothing else, there is little purpose in investigating a component if the asymmetry will go away

on its own, and not come back.

Thus, for our case study, persistence ordering serves two purposes: (i) to serve as a severity

or ranking metric, by ordering anomalous components by the duration of their asymmetries (i.e.,

those that are the most persistently anomalous have the highest severity), and (ii) to specifically

call attention to the components that are the most persistently anomalous, as, by virtue of experi-
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encing asymmetry for the longest duration, they’re the least likely components to resolve without

intervention.

An aspect of persistence ordering that has not been specifically explored is its function with

oscillating inputs. The input to persistence ordering, being the binary-valued output of anomaly

detection, can oscillate over time intervals, which corresponds to components that demonstrate

intermittent—specifically periodic—asymmetry, and so harbor the qualities of being both transient

and sustained. With the current persistence ordering algorithm, components will register as per-

sistently anomalous if they oscillate with a duty cycle greater than 50%, although the persistence

value will grow more slowly than components which have sustained asymmetries.

6.2.3 Diagnosis in Tiny Systems

Prior to our instrumentation of Intrepid’s storage system, we performed a prototype instrumen-

tation of Surveyor’s (a single rack Blue Gene/P system at Argonne National Laboratory) storage

system. While the instrumentation and analysis served as a prototype of our later case study with

Intrepid, we did encounter a couple of novel experiences while analyzing a system with a very

small (nearly minimal) number of peer components.

Surveyor’s GPFS-based storage system consists of four NSD servers and a single DataDirect

Networks S2A9550 storage array exporting eight LUNs to each of the servers. The LUNs them-

selves are partitioned into two sets of four, with each set containing a separate file system.

Since each LUN is attached to all NSD servers, this creates a shared storage setup similar to

Intrepid’s (§ 5.2.2) where each LUN has a prioritized server ordering. GPFS clients, thus, when

accessing a LUN, routes all I/O requests through the highest-priority, presently-available server

defined for that LUN. Using the terminology we adopted for Intrepid, analysis of Surveyor involves

32 LUN-server attachments separated into eight peer groups with four LUN-server attachments in

each group. As part of prototyping our analysis, we experienced two novel challenges.
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Histogram Bin Sizes. With four LUNs in each peer group, or anomaly detection algorithm

(§ 3.3) should still apply as we meet the minimum requirement of three components to establish

a majority symmetry and determine which one asymmetric component is anomalous. In practice

though, we found that when generating histograms with the Freedman-Diaconis rule, the Interquar-

tile Range (IQR) of our metric samples was being influenced by a single outlying (anomalous)

LUN, resulting in oversized bins and histograms where, like Sturges’ rule, all the data was con-

tained in the first and last bins. Thus, for Surveyor, we substituted the Median Absolute Deviation

(MAD) of our metric samples in place of IQR when using computing histogram BinSizes. With

MAD, the computed BinSizes were robust to a single anomalous LUN when comparing as few as

three LUNs. In contrast, the IQR requires comparing at least five LUNs to be robust to a single

outlier. Since our analysis of Intrepid included hundreds of components in each peer group, we

did use the IQR as specified by the Freedman-Diaconis rule, but our experience with Surveyor

indicates that the MAD can be used when the number of components is near minimal.

Server Workloads. As with Intrepid (§ 5.8.2), we observed server workloads whereby I/O is-

sued by one of the file servers itself would preferentially make use of its own LUN attachments,

regardless of its configured priority. Specifically, we witnessed a single, asymmetric workload per-

file-system among Surveyor’s server nodes, possibly the GPFS quota manager or another metadata

management component. We observed that this workload remains associated with a single file

server for a long time, for a few weeks or longer in the month-and-a-half period that we studied

Surveyor. However, if that file server went offline, the workload did migrate to a different server

indefinitely.

Unfortunately the presence of a sustained server workload among client workloads complicated

anomaly detection as there existed two potential peer groups for each LUN-server attachment: at-

tachments with the same NSD priority (peers of client workloads) and attachments on a single

server (peers of server workloads). The server workload’s presence was most troubling when

client workloads were light or idle, as it was significant enough to result in sustained asymmetry
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that would migrate after a file server restart. Although we could retrain after each migration event,

we found that as a viable alternative, we could filter out anomalies due to the server workload

by perform anomaly detection separately for attachments in each NSD priority group and for at-

tachments on each server. We then flag a LUN-server attachment if it’s anomalous with respect

to both its priority-group peers and its server peers. In our study of intrepid we did not generally

encounter problems with server workloads except when using the median alternative distance mea-

sure (§ 5.8). If we were to make greater use of this measure, we could filter out server-workload

anomalies using the same strategy.

6.3 Diagnosis of Disk Failures

Following our initial laboratory experiments we sought to observe and characterize realistic storage

system problems while still operating in a laboratory setting. Thus, we focused our observations

on disk failures in storage arrays by manually failing a single disk during executions of synthetic

workloads and observing the behavior of await while the storage array operated in degraded

(post-failure) and reconstruction (post-reinsertion) modes. Our intention was to use our observa-

tions of these failures to diagnose disk failure and reconstruction in the wild, i.e., on Intrepid’s

storage system. While only one of our observations was applicable to diagnosing failures during

read workloads in Intrepid, we did make several other useful observations that both confirm and

carry forward the direction of our problem diagnosis work.

We performed our disk-failure experiments on a 16-server GPFS system with eight IBM Total-

Storage DS4300 storage arrays exporting four data LUNs. Each data LUN is a five-disk RAID-5

array of size 203 GB, providing for a 6.5 TB file system. Additionally, each storage array maintains

three hot-spare disks, each of which can be substituted into one of the four RAID-5 arrays after a

disk failure event, to immediately start reconstruction of the failed disk contents onto the spare.

In these experiments we used the same performance metric instrumentation as we used for our

earlier experiments, focusing on the await metric, and ran the same workloads (e.g., ddr and
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Figure 6.1: Peer-asymmetry of eight LUNs’ await for ddr workload without hot spares.

ddw) on four clients, which were executed for the duration of the reconstruction interval and an

approximately equivalent duration (≈3600 s) in degraded mode.

Read Workloads without Hot Spares. Figure 6.1 show the asymmetries in await when a disk

is failed during read (ddr) workloads and no hot spare is available. When we fail the disk at 600 s,

the array enters degraded mode where we observe slightly asymmetric await on the failed LUN

alone. At approximately 4800 s we reinsert the failed disk and reconstruction of its contents from

the remaining four disks begins. At this point we observe asymmetries between three different sets

of LUNs. First, the previously-failed LUN exhibits a 30–40 ms await, expectedly, due to read

contention between the client workload and the reconstruction process. Unexpectedly, however,

we observe that the three adjacent LUNs on the same storage controller also exhibit an elevated

≈25 ms await despite their respective RAID-5 arrays operating in normal mode, suggesting that

the entire storage controller is bandwidth starved by the internal reconstruction I/O. In contrast,
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Figure 6.2: Peer-asymmetry of eight LUNs’ await for ddr workload with hot spares.

LUNs on the other seven controllers1 are unaffected in their awaits.

Read Workloads with Hot Spares. Figure 6.2 show the asymmetries in await when a disk is

failed during read (ddr) workloads and at least one hot spare is available. When we fail the disk

at 600 s, a hot spare is immediately inserted and the controller begins reconstruction of the failed

disk’s contents onto the spare. Here, the asymmetry is the same as reconstruction in the without-

hot-spare case. At approximately 4800 s, after reconstruction is complete, we reinsert the failed

disk and the contents of the hot spare are copied back to the reinserted disk so that the spare may

be released to the hot spare pool. During this copy-back procedure we again observe asymmetries

between the previously-failed LUN with significantly elevated await, the adjacent LUNs with

slightly elevated await, and LUNs on the other controllers. Here we believe the failed LUN

experiences significant read contention during copy-back, but since only ¼th the data is being read

1Figure 6.1 only shows the four LUNs on a single, representative controller.
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Figure 6.3: Peer-asymmetry of eight LUNs’ await for ddw workload without hot spares.

compared to reconstruction, the controller experiences much less bandwidth starvation.

Write Workloads without Hot Spares. Figure 6.3 show the asymmetries in awaitwhen a disk

is failed during write (ddw) workloads and no hot spare is available. When we fail the disk at 600 s,

the array enters degraded mode where we observe no asymmetry in await, which is expected as

the only difference in behavior is that the failed array writes to one less disk. At approximately

4800 s we reinsert the failed disk and reconstruction begins. Here, we only observe asymmetry

between two all LUNs on the affected controller and LUNs on the other controllers. All LUNs on

the affected controller, including the previously-failed LUN and its three adjacent LUNs, exhibits

the same ≈7 ms await with controller-wide bandwidth limitations being the most likely culprit.

Write Workloads with Hot Spares. Figure 6.4 show the asymmetries in await when a disk is

failed during write (ddw) workloads and at least one hot spare is available. The behavior when we
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Figure 6.4: Peer-asymmetry of eight LUNs’ await for ddw workload with hot spares.

fail the disk at 600 s and the hot spare is inserted, is identical to reconstruction in the without-hot-

spare case. At approximately 5200 s, after reconstruction is complete, we reinsert the failed and

copy-back begins. Here we observe a minimal asymmetry with LUNs on the affected controller

exhibiting a marginally elevated await compared to LUNs on the other controllers.

6.3.1 Applicability of Observations.

From our observations of disk failures, it’s not possible to identify storage arrays operating in de-

graded mode during write-only workloads as large write-back caches serve to avoid read-modify-

write operations and perform large writes to all (present) disks in both normal and degraded modes.

Indeed, this was an anecdote shared with by the PVFS developers’ early in our research (§ 2.4.

While it may be possible to identify a storage-controller-related problem during array reconstruc-

tion, our observations suggest it’s not possible to localize those problems to the specific array af-
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fected. Our later observations of Intrepid’s storage system suggests that the bandwidth limitations

we observed during our experiments may be an artifact of the DS4300 units and not necessarily

characteristic of storage arrays in general.

In contrast, it should be possible to identify storage arrays operating in reconstruction and

copy-back modes during read-only or read-write workloads due to the presence of significant read

contention during the reconstruction process. However, during our study of Intrepid’s storage sys-

tem, we discovered that most instances of “disk failures” were operator initiated in response to

logged disk events. In many of these instances, including drawer errors (§ 5.7.2), operators would

manually fail disks and quickly reinsert them. Since the disks themselves had often not failed,

the storage controllers would perform journal replays to quickly recover the disk contents in just a

few minutes. Even in instances when disks were outright replaced, the recovery process, taking no

more than a couple of hours, would only appear as a low-persistence transience anomaly. Fortu-

nately, the slightly asymmetric await that we observed in degraded mode during read workloads

did apply in our study of Intrepid where we diagnosed them as drawer errors and single LUN

events.

Finally, our observations of asymmetry between multiple sets of LUNs during reconstruction

does illustrate a flaw in our current peer-comparison algorithm. In neither our laboratory experi-

ments or case study of Intrepid’s storage system had we encountered one problem known to man-

ifest as observably different asymmetries across both components that are directly involved in the

problem (the LUN containing the failed disk) and components that are related to it by a shared

resource (the LUNs adjacent to the failed disk sharing the same controller). Applying our current

anomaly detection during reconstruction mode with read workloads, we can only indicate that the

entire controller is anomalous and are unable to further distinguish between the LUNs despite a

significant difference between them in await metric magnitude. Although there is no significant

consequence of this ambiguity for this particular situation (reconstruction happens after an oper-

ator intervenes to replace a failed disk), its existence suggests potential value in further ascribing

severity based on degree of peer-asymmetry in the presence of multiple anomalous components.
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6.4 Missteps Made During Our Research

As our final lesson learned, we summarize the missteps made during our problem diagnosis re-

search performed in support of this thesis. Having completed our case study of Intrepid’s storage

system, and with the benefit of hindsight, we highlight two areas of our research that, if we were

to start over, we would approach differently.

6.4.1 Alarm-Based Anomaly Detection in Lab Experiments

Our first misstep was our focus on the development of an anomaly detection algorithm providing

a binary-valued, alarm-based output (anomalous versus normal), and evaluating this output with

experiment-wide true- and false-positive rates as we did for our laboratory experiments. Although

this approach is familiar, being common in literature as a means to evaluate anomaly detection

algorithms, we made the incorrect assumption that it is possible to accurately and usefully charac-

terize system components with a single binary state (being either anomalous or normal), without

either introducing too many false alarms or masking too many problems. Particularly misleading

is that this approach did work for our laboratory experiments, disk failure experiments, and our

study of Surveyor. It was only when we started analyzing the instrumentation data collected from

Intrepid, a system with two orders of magnitude more components (LUNs) than systems we had

looked at previously, that we observed the regular occurrence of transient performance asymme-

tries (§ 6.2.2), requiring us to extend our problem-diagnosis approach with persistence ordering

(§ 3.4).

Persistence ordering, with its ranked, integer-valued output provides more information to op-

erators about the relative health of components and the overall system, than independent, binary-

valued alarms. For example, when an operator observes that many (10+) LUNs within the same

storage array start to experience anomalies, the operator may choose to investigate the problem,

likely a drawer error, right away due to the sheer number of LUNs involved. In contrast, when the

operator observes that the top-most anomalous LUNs include one or two single LUN events and
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there’s no external sign of performance concern, the operator may wait for the LUNs’ persistence

values to increase before investigating knowing the anomalies may resolve without intervention.

In hindsight, due to both the necessity and benefit of the information provided by persistence

ordering, we should have made it part of our original problem localization algorithm and applied

it during our laboratory experiments. We would also consider approaches to replace the thresholds

used in anomaly detection with normalization factors, so that the input to persistence ordering

could be continuously-valued, perhaps reflecting the magnitude of asymmetry in the performance

metric itself (§ 8.1).

Furthermore, because the information provided by persistence ordering has different utility

than binary-valued alarms, especially in the context of 24/7 monitoring, there are alternative—if

not better—ways to evaluate diagnosis algorithms than using true- and false-positive rates. For

example, in § 5.8.3 we evaluate alternative distance measures by their diagnosis latencies. If we

had applied persistence ordering to our laboratory experiments, we would also have considered

evaluating other factors including the number of anomalous, but fault-free components, and a

comparison of the maximum persistence between faulty and fault-free components.

6.4.2 Disk-Failure Experiments

In § 6.3 we describe a set of disk-failure experiments that we performed in a GPFS cluster following

our initial laboratory experiments. Unfortunately our motivations for performing these experiments

were misguided and we found that the results, particularly for write-only workloads, were system

specific, and thus, not fully applicable to Intrepid’s storage system.

Through our laboratory experiments we had validated that our anomaly detection algorithm

was capable of identifying component anomalies, at least for injected faults. At that time, our

goal was to test our diagnosis approach on problems representative of those in real-world systems.

We decided to observe and characterize the behavior of disk failures, particularly in the post-

failure modes (degraded mode, reconstruction, and copy-back) as we could reliably initiate them

by manually failing disks in a storage array and observe the behavior of the array while operating
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in these modes.

We found that we could observe anomalies in all three post-failure modes (degraded mode, re-

construction, and copy-back) for both read and write workload in our experimental GPFS system.

However when we applied our anomaly detection to known disk failure events in Intrepid’s storage

system, we found that we were unable to observe anomalies for write-only workloads. We then

determined that the behavior (bandwidth starvation) of our experimental system responsible for the

observed component anomalies was simply not present with the storage arrays used in Intrepid’s

storage system. Thus, we concluded that our characterization of disk failures for write-only work-

loads was specific to an artifact of our experimental system, and not a behavior common to all

storage systems or even GPFS-based systems.

We had better success applying our anomaly detection to Intrepid disk failure events for read-

only and read-write workloads. However we had a concern of poor motivation. As Intrepid’s

storage arrays lack hot spare disks, reconstruction only occurs after an operator manually replaces

a disk, and thus, it is redundant to inform the operator of the anomalies occurring due to recon-

struction. Furthermore, reconstruction is a relatively short process observed as a transient anomaly.

Observing anomalies during degraded mode is beneficial as operator intervention is required

to replace the failed disk. However, from storage-controller logs, we observe that 77% of all disk

failure events, and 33% of temporally distinct disk-failure events,2 are operator initiated. This

knowledge changes our motivation for analyzing anomalies related to disk failure events: because

operator intervention is often needed to resolve the underlying problems (including drawer errors

and single LUN events), it is also important—if not more so—to detect the pre-failure anomalies

that result in reported disk failure events.

Thus, we approached our disk-failure experiments with a solution, our anomaly detection al-

gorithm, in search of real-world problem on which to validate it. This approach broke down when

we applied it to a real-world system, where the details of disk failure events differed significantly

from our experiments. In the end, we had to observe Intrepid’s storage system as a whole to un-

2Since many disk failure events occur within one minute of other disk failure events, we compress all such events
that occur within a minute of another as a single, temporally distinct event.
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derstand how we could effectively perform problem localization within it. This led us to using our

complete problem localization algorithm to observe a set of performance-impacting problems, in-

cluding drawer errors and single LUN events, with better understanding of the reasons for operator

intervention.
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Chapter 7

Related Work

While our work is suited to diagnosing problems that affect specific, peer components within a

storage system, (i.e., the class of hardware component faults) by using readily available perfor-

mance metrics, it does not have visibility of other classes of storage system problems including

suboptimal workload I/O patterns, misconfigurations and software/firmware bugs activated on all

peer components simultaneously, and problems affecting non-peer hardware components. While

our approach may be used to exclude hardware component faults, a comprehensive solution to

storage-system problem diagnosis would make use of related work to gain visibility of, insights

into, and diagnose these other classes of problems.

The related work is categorized in terms of the types of approaches that have been used (trace-

based, peer-comparison, etc.). We also describe research efforts on failure diagnosis and failure

characterization that are specific to the target systems of interest to this dissertation, namely, file

systems and storage systems. We also conclude with a brief overview of other efforts at failure

diagnosis in productions systems.

7.1 HPC Storage-System Characterization

Darshan [9] is a tool for low-overhead, scalable parallel I/O characterization of HPC workloads.

Darshan shares our goal of minimal-overhead instrumentation by collecting aggregate statistical
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and timing information instead of traces in order to minimize runtime delay and data volume,

which enables it to scale to leadership-class systems and be used in a “24/7”, always-on manner.

Carns et al. [8] combine multiple sources of instrumentation including OS-level storage device

metrics, snapshots of file system contents characteristics (file sizes, ages, capacity, etc.), Dar-

shan’s application-level I/O behavior, and aggregate (system-wide) I/O bandwidth to characterize

HPC storage system use and behavior. These characterization tools enable a better understanding

of HPC application I/O and storage-system utilization, so that both may be optimized to maxi-

mize I/O efficiency. Our diagnosis approach is complementary to these efforts, in that it locates

sources of acute performance imbalances and problems within the storage system, but assumes

that applications are well-behaved and that the normal, balanced operation is optimal. Thus, these

characterization tools may be used to ensure that our assumptions of optimal workloads is satisfied.

7.2 Failures in HPC and Storage Systems

Studies of HPC and storage-system failures motivate our focus on diagnosing problems in storage-

system hardware components. A study of failure data collected over nine-years from 22 HPC

systems at Los Alamos National Laboratory (LANL) [50] finds that hardware is the largest root

cause of failures at 30–60% across the different systems, with software the second-largest contrib-

utor at 5–24%, and 20–30% of failures having unknown cause. The large proportion of hardware

failures motivates our concentration on hardware-related failures and performance problems.

A field-based study of disk-replacement data covering 100,000 disks deployed in HPC and

commercial storage systems [51] finds an annual disk replacement rate of 1–4% across the HPC

storage systems, and also finds that hard disks are the most commonly replaced components (at

18–49% of the ten most frequently replaced components) in two of three studied storage systems.

Given that disks dominate the number of distinct components in the Intrepid storage system, we

expect that disk failures and (intermittent) disk performance problems comprise a significant pro-

portion of hardware-related performance problems, and thus, are worthy of specific attention.

99



Jiang et al. [28, 29, 30] studied problem troubleshooting using 636,108 real-world customer

cases reported from 100,000 commercially deployed NetApp storage systems over a period of two

years. The study focused on correlating the root-cause analysis outcome with the storage-system

logs. The study produced a number of interesting insights including the facts that (i) hardware

failure and misconfiguration are the two most frequent problem root-cause categories, contributing

respectively, 47% and 25% to all customer cases, (ii) software bugs account for a small fraction

(3%) of cases, (iii) logs are useful in reducing problem-resolution time. However, as the study

observes, while logs are noisy and important log events are hard to locate, it might be possible to

extract a signature (a set of relevant log events that uniquely identify a problem root cause) and

then use that signature to detect recurring problems and to distinguish problems from each other.

Gainaru et al. [21] also analyzes log messages, from large-scale HPC systems, to build models that

characterize and predict normal and faulty behaviors (events) of the systems.

DIADS [6] is a tool that aims to provide diagnosis for an enterprise system comprised of

databases running on a network-attached storage infrastructure (or SAN). DIADS introduces the

concept of Annotated Plan Graphs (APGs) that capture the interaction of the database with the

disk, essentially providing the dependency mapping from database operators to the physical disk

where the data resides. The elements of the APG are annotated with performance data, allowing

for analysis of where the performance issues lie, and also allowing for traceback to higher-level

root-cause analysis of where the origin of the problem lies.

Anode [42] is an approach to diagnosing problems in storage systems using a combination

of time-series analysis and historical system behavior, in order to pinpoint the affected parts of

the system, and to identify the time periods when the impact of the problem is most felt. Anode

involves the period collection of metrics (read IOPS, write IOPS, read latency, write latency, etc.)

from a storage system, along with a baseline summarization of the expected metric values based

on the historically-known behavior of the system. Robustness in anomaly detection is obtained

by combining a number of metrics and their respective anomalies in order to produce an overall

anomaly score.
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These approaches differ from our peer-comparison-based approach in that they use historical

data (logs and historical performance metrics) instead of peer behavior, to find events or com-

ponents of the system most responsible for failures or user complaints of degraded performance.

Thus, they are suitable for diagnosing problems (e.g., misconfigurations and software/firmware

bugs) where a specific type of component, including non-peer components, exhibits degraded per-

formance compared to past usage.

7.3 Trace-Based Problem Diagnosis

Many previous efforts have focused on path-based [2, 47, 4] and component-based [12, 40] ap-

proaches to problem diagnosis in Internet Services. Aguilera et al. [2] treats components in a dis-

tributed system as black-boxes, inferring paths by tracing RPC messages and detecting faults by

identifying request-flow paths with abnormally long latencies. Pip [47] traces causal request-flows

with tagged messages that are checked against programmer-specified expectations. Pip identifies

requests and specific lines of code as faulty when they violate these expectations. Magpie [4] uses

expert knowledge of event orderings to trace causal request-flows in a distributed system. Magpie

then attributes system-resource utilizations (e.g. memory, CPU) to individual requests and clus-

ters them by their resource-usage profiles to detect faulty requests. Pinpoint [12, 40] tags request

flows through J2EE web-service systems, and, once a request is known to have failed, identifies

the responsible request-processing components.

These trace-based approaches motivated the development of comprehensive end-to-end trac-

ing frameworks [53, 18, 60] that are presently deployed in distributed systems for monitoring,

debugging, and diagnostic purposes. Dapper [53] is built into the RPC libraries used in Google

services and demonstrates the use of adaptive trace sampling to provide very low instrumentation

overheads. X-Trace [18] provides an approach to retrofitting systems with end-to-end tracing and

demonstrates it in multiple production services [17]. Stardust [60] builds end-to-end tracing into

the Ursa Minor distributed storage system [1] and serves as the instrumentation basis for robust
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performance modeling [59] and problem diagnosis [48]. Spectroscope [48] is a diagnostic tool

used in conjunction with Stardust that compares distributed system request-flow traces from prob-

lem and non-problem execution periods to identify the component-level and software-level sources

of performance changes.

In HPC environments, Paradyn [43] and TAU [52] are profiling and tracing frameworks used

in debugging parallel applications, and IOVIS [44] and Dinh [15] are retrofitted implementations

of request-level tracing in PVFS.

Huang et al. [26, 27] is an interesting approach to failure diagnosis for Web-based applica-

tions by transparently profiling all of the file-system-related calls made by the application. While

they don’t focus on diagnosing problems in file-systems, they use file-related calls as a source of

instrumentation to diagnose Web-based applications. System monitoring of the running system

is performed through FUSE, without requiring the recompilation of the applications or any mod-

ification to the application source-code. The research focuses on studying the effects of normal

and (injected) abnormal behavior of the application on the FUSE-instrumented file-related calls;

classifiers are built off the labeled failure data, in order to classify future observed data.

In general, trace-based approaches offer significant advantages over performance metrics in

terms of request-level localization and detail, making it possible to diagnose problems to specific

request types and their impact on performance, which aids in code-level debugging. Thus, where

available, trace-based techniques may be used to diagnose problems in both peer and non-peer

components. However, at present, there is limited request-level tracing available in production

HPC storage deployments, and thus, we concentrate on a diagnosis approach that utilizes aggregate

performance metrics as a readily-available, low-overhead instrumentation source.

7.4 Other Peer-Comparison-Based Approaches

Ganesha [45] seeks to diagnose performance-related problems in Hadoop by classifying slave

nodes, via clustering of performance metrics, into behavioral profiles which are then peer-compared

102



to indict nodes behaving anomalously. While the node-indictment methods are similar, our work

peer-compares a limited set of performance metrics directly (without clustering). Bodik et at. [5]

use fingerprints as a representation of state to generally diagnose previously-seen datacenter perfor-

mance crises from SLA violations. Our work avoids using previously-observed faults, and instead

relies on fault-free training data to capture expected performance deviations and peer-comparison

to determine the presence, specifically, of storage performance problems.

Wang et al. [62] analyzes metric distributions to identify RUBiS and Hadoop anomalies in en-

tropy time-series. Our work also avoids the use of raw-metric thresholds by using peer-comparison

to determine the degree of asymmetry between storage components, although we do threshold our

distance measure to determine the existence of a fault. PeerWatch [31] peer-compares multiple in-

stances of an application running across different virtual machines, and uses canonical correlation

analysis to filter out workload changes and uncorrelated variables to find faults. We also use peer-

comparison and bypass workload changes by looking for performance asymmetries, as opposed to

analyzing raw metrics, across file servers.

7.5 Problem Diagnosis in Other Production Systems

Gabel et al. [20] applies statistical latent fault detection using machine (e.g., performance) coun-

ters to a commercial search engine’s indexing and service clusters, and finds that 20% of machine

failures are preceded by an incubation period during which the machine deviates in behavior (anal-

ogous to our component-level problems) prior to system failure. Draco [38] diagnoses chronics

in VoIP operations of a major Internet Service Provider by, first, heuristically identifying user in-

teractions likely to have failed, and second, identifying groups of properties that best explain the

difference between failed and successful interactions. This approach is conceptually similar to

ours in using a two-stage process to identify that (i) problems exists, and (ii) localizing them to the

most problematic components.

Theia [22] is a visualization tool that analyzes application-level logs and generates visual sig-
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natures of job performance, and is intended for use by users to locate and problems they experience

in a production Hadoop cluster. Theia shares our philosophy of providing a tool to enable users

(who act in a similar capacity to our operators) to quickly discover and locate component-level

problems within these systems.
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Chapter 8

Future Work & Conclusion

Through the development of our peer-comparison-based problem-diagnosis approach, our labo-

ratory experiments on test-bench parallel file system clusters, and our case study of large-scale,

real-world production storage system we have confirmed our thesis statement: through the collec-

tion and analysis of black-box, OS-level performance metrics, we have shown that is possible to

localize storage system problems to the misbehaving components most responsible for degraded

parallel-file-system performance.

8.1 Future Work

While the work performed in support of this thesis is sufficient to diagnose problems in Intrepid’s

storage system, during our research we have identified multiple areas for improvement and further

investigation.

Severity and Ranking of Anomalies. With our present anomaly detection algorithm, a given

component behaves either anomalously (demonstrates peer asymmetry) or normally (demonstrates

peer symmetry) for any instantaneous point in time. Persistence ordering provides us with a means

to rank components based on the persistence, roughly the duration, of anomaly. Thus, components

ranked with the highest persistence are generally those that have experience anomalies for the
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longest duration.

Missing, however, from this ranking is the magnitude of asymmetry, specifically, the degree to

which the problem manifests in the underlying performance metric. As one example, in § 6.3, we

observe a single problem (reconstruction of a failed disk) that manifests in the performance metrics

of multiple components such that there are two different degrees of peer asymmetry reflecting the

immediacy of the component to the underlying problem. Thus, by incorporating the magnitude of

asymmetry into a severity metric, we would be able to distinguish between these components, and

thus, further localize this problem closer to its source.

As a second example, while our persistence-ordering approach works well to identify longer-

term problems in Intrepid, there is a class of problems that escapes our current approach. Occasion-

ally, storage controllers will greatly delay I/O processing in response to an internal problem, such

as the “LUN resets” observed on ddn12 in the May 18th, 2011 cascaded failure event. Although

we observed this particular incident, in general, order-of-magnitude increases in I/O response times

are not highlighted by a severity metric. Thus, the development of an ranking method that factors

in both the magnitude of asymmetry, as well as the anomaly’s persistence, would be ideal in high-

lighting problems that are either severe and short, or not as severe but long in duration.

Coalescing of Anomalous Components. In our study of Intrepid, we observed that problems

in storage controllers tend to manifest in a majority of their exported LUNs, and thus, a single

problem can be responsible for as many as 50 of the most persistent anomalies. It would be bene-

ficial to extend our approach to recognize that, since these anomalous LUNs are part of the same

storage controller and manifest the same problem, that we should coalesce the LUNs’ anomalies

into a single report covering the entire controller. This in turn, would make it considerably easier

to discover multiple problems, affecting different sets of components, that manifest in the same

time period.

Discovery of Peer Groups. In our study of Intrepid we defined peer groups based on the com-

bination of NSD server priorities (defined for each LUN as part of GPFS’s static, file-system-wide
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configuration) and a single system expansion (the addition of 384 empty LUNs). Fortunately NSD

server priorities generally never change, and system expansion events are sufficiently rare that

manually defining additional peer groups is not onerous, especially relative to the configuration

that’s necessary to perform on GPFS itself to facilitate a system expansion. However, it would

be convenient for our problem diagnosis to automate the process of discovering peer groups, and

it may be necessary to do so to support future file systems where peer groups may arise from a

dynamic configuration (i.e., to balance free space, or to optimize performance based on long-term

component trends, etc.).

We propose two approaches to automate discovery of peer groups. The first is a black-box ap-

proach whereby the diagnosis algorithm groups together components with similar throughputs, and

then performs peer comparison among latency metrics (e.g., await) for each similar-throughput

group. This would enable the diagnosis approach to dynamically adapt to different peer groups

and, by observation 5 (§ 4.2) still be able to diagnose disk-busy-like problems. Unfortunately, this

approach would be unable to diagnose disk-hog-like problems as the asymmetry in throughput

would split the anomalous and normal components into two different peer groups. The second is a

white-box approach where we modify, or otherwise require that future file systems communicate

peer groups and changes to their assignments to the diagnosis agent. Both approaches, however,

still assume that peer groups are a function of file-system wide configuration and not determined

on a per-request basis.

Automated Localization via System Topology. In our study of Intrepid, problem localization is

a function of the set of affected components. By adopting a LUN-server-attachment identification

scheme that includes the controller and server, we can easily localize problems to controllers (or

servers) when we observe a set of anomalous LUNs with the same controller (or server) identifier.

However, for problems where one controller fails in a coupled-controller pair, we can only localize

to the specific controller of that pair with knowledge of the storage system topology, specifically

by knowing the set of four file servers attached to that controller.
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This localization could be automated in our problem diagnosis by analyzing a graph of the

system topology. Specifically, when a problem is observed across a set of components, we would

determine which one shared component (e.g., a controller within a coupled pair) is most-common

to the affected set (the LUNs attached to the four servers via that controller) and is also least-

common to the unaffected set (the LUNs inside other storage arrays or attached to other servers).

While knowledge of this topology was only necessary for localization of certain controller-related

problems in Intrepid, it may be required for sufficient localization of problems in more complex

(e.g., greater number of tiers) systems.

8.2 Conclusion

We have shown through the research in support of this thesis that we are able to exploit the peer be-

havior inherent in parallel file systems to identify and diagnose storage system problems through

the collection and analysis of black-box, OS-level performance metrics. We have presented our

experiences of taking our problem-diagnosis approach from proof-of-concept on a 12-server test-

bench cluster, and making it work on large-scale, real-world production storage system. We have

also shared our observations, challenges, solutions, experiences, insights, and lessons learned

from performing our problem diagnosis experiments and studies. By diagnosing a variety of

performance-related storage-system problems, we have shown the value of our approach for di-

agnosing problems in large-scale storage systems. Finally, we have provided direction for future

research, so that our approach may be applied towards future studies and systems.
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