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Abstract

Side-channels are unanticipated information flows that present a significant threat

to security of systems. Quantitative analyses are required to measure the rate of

information leakage and the accuracy of information learned through side-channel

attacks. To this end, the work presented in this thesis develops a general model of

a side channel, which is represented as a two-input-single-output system and speci-

fied by the probability distribution of the output conditioned on the inputs. For this

model, three quantitative metrics are defined: capacity, leakage, and reliability rate.

The thesis argues that capacity is an ill-suited metric for side channels and recom-

mends the use of other two metrics to measure the leakage rate and accuracy of infor-

mation learned, respectively. These metrics are used to analyze attacks employed in

very different application areas: private communication detection in VoIP networks,

packet schedulers in web communication, and timing attacks against modular multi-

plication routines used in public-key cryptosystems. The analyses presented in this

thesis enable us to: 1) determine system parameters and user behaviors that pre-

serve privacy, 2) compute the lifetime of private information, and 3) identify attack

strategies that leak most information. More importantly, they enable us to study the

conditions under which existing countermeasures perform as expected and develop

information-theoretic countermeasures against side-channel attacks.
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Susana, and Luis. I thank them for helping me settle into a new country, ordering

my food, dealing with paperwork, and making Porto a home away from home for

me.

An equally difficult aspect of this Ph.D. was to deal with bureaucracy over two

countries, two universities, and multiple funding agencies. The system could have

broken down at any time without the help of the wonderful people in the CMU

Portugal program, CyLab, Instituto de Telecomunicação Portugal, Carnegie Mel-

lon University and the University of Porto. My personal thanks to Sara Brandão,
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Chapter 1

Introduction

A side channel is an unintended information flow created when the internal functioning of a

system is correlated to a physical attribute, such as timing, power consumption, and electro-

magnetic/acoustic radiation. An attacker who observes any of these attributes can deduce secret

parameters, such as cryptographic keys and private system states. The class of attacks that em-

ploy side channels is known as side-channel attacks (SCAs). To discover a secret parameter of

a system, a side-channel attacker issues inputs to the system and observes corresponding change

in the attribute. Since the presence of a side channel is typically unknown to the designers and

hence often left un-countered, it has the potential of leaking private information even in systems

where traditional attacks, like cryptanalysis, fail.

One of the earliest recorded side-channel attacks was performed during the Suez crisis in

1956. In a project code-named ENGULF, the British intelligence agency, MI5, bugged the Egyp-

tian embassy in London using microphones and recorded clicking sounds of the rotors of their

mechanical ciphers [66]. Using these recordings, MI5 was able to learn positions of rotor 2 and

3 of the cipher, greatly reducing the complexity of breaking it. They used similar techniques

to break the cipher of the French embassy by observing the electromagnetic leakage of its tele-

printer. Declassified documents from the U.S. National Security Agency (NSA) revealed a sim-

ilar program named TEMPEST that used emanations from electro-mechanical devices to break
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cryptosystems [20]. While successful, these attacks still required the attacker to have physical

access to the cipher, which limited their practicability. Hence, SCAs received little mainstream

attention in security research historically.

SCAs gained prominence after Paul Kocher used timing attacks to break several modern

asymmetric cryptosystems [37]. In his seminal paper, Kocher showed that asymmetric cryp-

tographic algorithms consume different amounts of time depending on the plaintext and secret

key. He used this vulnerability to break systems, such as RSA [54] and Diffie-Hellman [15],

which have been immune to traditional cryptanalysis. The practical effectiveness of timing at-

tacks was strongly established when their feasibility was demonstrated remotely against popular

cryptographic libraries, like OpenSSL [6], and devices, such as smart-cards [13].

More recently, the scope of SCAs has increased greatly beyond cryptographic algorithms.

Traffic-analysis attacks that use side-channel observations like packet length and timing char-

acteristics, are potent tools in breaching communication anonymity and privacy. These attacks

have been successfully demonstrated to extract private health and medical information of web-

application users [10]. SCAs can be remotely launched to breach communication anonymity of

internet users [28], even when anonymous networks like Tor [47] are employed. Side channels

present in communication end-devices have been exploited to reveal call-record information of

user’s of private networks [35] [34]. Additionally, similar attacks have been demonstrated in

new-generation technologies such as cloud-computing [67].

Growing interest in side-channel attacks as means to break secure systems can be attributed

to at least two reasons. First, benign implementation choices for otherwise secure systems can

lead to unanticipated side-channel attacks. Second, side channels often rely on useful implemen-

tation features and hence cannot be prevented; e.g., dynamic scheduling of resources at network

devices. Unlike covert channels, they do not require the presence of a Trojan Horse or other mod-

ifications in the system. These reasons make side-channel attacks more pervasive, and harder to

detect-and-counter.
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1.1 A Review of Side-channel Attacks

We provide a brief review of well-known side-channel attacks to highlight the threat they pose

and motivate the need for precise quantitative analyses of their leakage potential.

1.1.1 Side-channel Attacks in Communication Networks

Traffic-analysis refers to the analysis of network traffic meta data, particularly; packet lengths

and timing which allow an adversary to infer private information of communicating parties or

breach their communication anonymity. Traffic analysis has increasingly become an alternative

to traditional wiretapping which often fails due to the widespread use of end-to-end encryption

which ensures content confidentiality. However, the threat to privacy and security caused by

traffic-analysis attacks can be as significant. Apart from revealing a user’s private data, such

as passwords, keys, traffic-analysis can also be used to reveal their communication relation-

ships. Communication relationships provide significant amount of information about a user’s

identity, behavior, and social milieu, and therefore, are highly sought-after information in law-

enforcement community. Numerous side-channel attacks have been developed for these pur-

poses.

For example, inter-packet timings have been used to successfully learn users’ SSH pass-

word [62]. The SSH protocol transmits each password letter separately as soon as it is entered

and encrypted. Inter-packet timing between transmission of two consecutive letter is dominated

by the difference in timing of key-presses on the user’s keyboard which depends on the relative

positions of the two keys. Using the inter-packet timings, the attacker creates a Hidden Markov

Model of the key presses and employs it to significantly improve well-known password cracking

attacks like dictionary attacks. Packet length and timing characteristics have also been used to

identify media-streams [55] and reveal private financial/medical information of web-application

users [10]. In addition to passively observing existing timing discrepancies, the attacker can ac-

tively create these differences in certain scenarios. Felten and Schneider [19] described an attack
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where hidden HTML objects from a different website, Website B, are embedded by the attacker

in his own website, Website A. If a user has browsed the Website B before browsing WebsiteA,

these objects are pre-cached and therefore, the loading time of Website A is considerably less.

To prevent leakage of sensitive information through these attacks, the notion of anonymous net-

working has been developed [51].

Modern anonymous networks are based on an approach developed by David Chaum to create

an anonymous e-mail delivery system. This approach, called the mix network [8], is comprised

of the following features: 1) encryption of packet content and addresses, 2) division of packets

in cells of equal size, 3) use of at least one relay node through which all packets are forwarded,

and 4) queuing, delaying, and re-ordering of packets at intermediate nodes. A disadvantage of

this approach is the introduction of large packet delay which cannot be tolerated by applications

like streaming, VoIP, or browsing. For such applications, specialized anonymous networks have

been developed, such as Tor [16], Crowds [53], Web Mixes [3]. Unlike a mix network, these

networks do not perform explicit delaying and re-ordering of packets at the intermediate node.

Instead, they rely on large traffic and multiple forwarding relays to create an effect similar to

mixing. One of the most popular examples of low-latency anonymous networks is Tor [16]. Due

to the absence of explicit mixing, low-latency anonymous networks remain susceptible to global

adversaries and traffic matching attacks [52]. For VoIP communication, which has an even more

stringent delay requirement, no widespread anonymous network exists. Skype is considered

to provide anonymity to VoIP users due to its closed-source design. However, it has recently

been proven to be vulnerable to traffic-analysis attacks that reveal either the identities of the

communicating parties [68] or the identify the network path [50].

Low-latency anonymous networks are particularly vulnerable to side-channel attacks. The

sharing of network resources at relay nodes by different traffic streams has an adverse effect on

anonymity. Relays in low-latency anonymous networks, such as Tor, buffer packets belonging to

different traffic streams and forward them using round-robin or first-come-first-serve scheduling
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policies. This creates dependencies between traffic load of one stream and the queuing delay

of the packets of another stream that shares the relay. This security vulnerability was exploited

by Murdoch and Danezis to learn the secret path taken by an anonymous stream in Tor [47]. A

similar side-channel attack was launched by Gong et al. against home DSL users to learn the

websites browsed by them [28].

The side-channel attacks discussed so far exploit weaknesses in scheduling and other policies

at the relay nodes, which are part of the network’s design. However, side-channel attacks can

be used to breach anonymity even if the network is perfectly private; i.e. does not reveal user’s

identity through any information collected inside the network. This attack, named Private Com-

munication Detection, exploits side channels present in a communication end-device that reveal

the device’s busy/idle activity status. For low-latency applications like VoIP, the correlation be-

tween busy/idle activity of two communicating parties is high, which allows an attacker to reveal

their private communication relationships and call-records [35], [34]. Since the designers of an

anonymous network have no control over the end-device, side-channel attacks become feasible

even in perfectly anonymous networks.

1.1.2 Timing Attacks against Cryptographic Algorithms

Asymmetric cryptosystems, such as RSA and Diffie-Hellman-Key-Exchange (DH), require re-

peated computation of modular exponentiations. In the case of RSA (described in Algorithm 1),

decryption of a ciphertext c requires the computation of cd(mod m), where d is the private key

and m is the publicly-known RSA modulus. In the case of DH (described in Algorithm 2), a

participating party secretly selects a value x and computes gx(mod p), where g is the group gen-

erator and p is the shared prime. The goal of the attacker is to either learn the secret exponent for

these cryptosystems or factorize the modulus in the case of RSA. To achieve this, he is allowed

to send chosen ciphertexts and observe the computation time for their exponentiation.

Successful timing attacks have been demonstrated against these cryptosystems in practice
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Data: plaintext message:u; large primes: p and q

m = p.q;

φ(m) = (p− 1)(q − 1);

private key e, such that 1 < e < φ(m) and gcd(e, φ(m)) = 1;

public key d, such that d.e = 1(mod φ(m));

Encryption c = ud(mod m);

Decryption u = ce(mod m);
Algorithm 1: RSA Algorithm

Data: public group generator, g; public prime, p

Alice: select secret x ∈ G;

Alice: compute ma = gx(mod p);

Bob: select secret y ∈ G;

Bob: compute mb = gy(mod p);

Alice→Bob: ma;

Bob→Alice: mb;

Alice: compute mx
b (mod p) = gxy(mod p);

Bob: compute my
a(mod p) = gxy(mod p);

Algorithm 2: Diffie-Hellman Key-Exchange between Two Parties

for the past two decades [6, 13, 37]. These attacks rely on a side channel created due to the

dependence of computation time of a modular exponentiation on the ciphertext, exponent, and

modulus. Such discrepancy is caused by two factors:

• Modular exponentiation algorithms, such as square-and-multiply, read exponent bits one-

at-a-time. Irrespective of the value of the read bit, the temporary variable is multiplied

to itself; i.e. squared. However, if the read bit is set, an additional multiplication of the

temporary variable and the base is performed, resulting in two multiplication operations.

This leads to the operation taking different times for different bit values.
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• Modular exponentiation involves repeated modular multiplication which is a computationally-

expensive operation. Specific algorithms, in particular, Montgomery Multiplication [46],

have been developed to perform it efficiently in hardware. Montgomery Multiplication

occasionally requires additional steps for certain values of the multiplicands and modulus.

Since the total computation time of an exponentiation is the sum of computation time of

each constituent multiplication, it varies with the modulus and base of the exponentiation.

In a typical attack, the adversary first measures the total decryption time for the chosen cipher-

text. Using this information, he estimates the most significant bit of the exponent. He computes

the time required for processing the ciphertext with this bit offline and subtracts it from the total

computation time. The next significant bit is estimated and the process is repeated until sufficient

number of bits have been estimated. At this point, the attacker can use number-theoretic rela-

tionships between the modulus and exponent to guess the less significant bits. This attack was

practically demonstrated by Dhem et al. in smart-card devices [13]. Significant optimization

using statistical techniques were performed by Schindler [58].

The above attack has the limitation that the attacker is required to know the modulus, M .

This is usually the case with most implementations, as RSA modulus and DH prime-modulus

are required to be publicly known. However, implementations of RSA that use the Chinese Re-

mainder Theorem(CRT) (Algorithm 3) do not satisfy this requirement [44]. The primary reason

for employing CRT in RSA is to increase efficiency of decryption. Under CRT, an exponentiation

with large modulus and exponent is replaced with two exponentiations with smaller modulus and

exponents.

Inadvertently, the use of CRT also prevents basic timing attacks. The modulus used to per-

form an exponentiation in CRT is a prime factor of the RSA modulus and unknown to the at-

tacker. This prevents the attacker from offline computation of intermediate operations. However,

Schindler showed that the probability of extra reduction in a Montgomery Multiplication de-

pends on the ciphertext, the exponent bit, and the modulus. Since exponents behave as random
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Data: ciphertext: c; large primes: p and q

m = p.q;

φ(m) = (p− 1)(q − 1);

dp = d(mod p);

dq = d(mod q);

bp such that bp = 1(mod p) and bp = 0(mod q);

bq such that bq = 0(mod p) and bq = 1(mod q);

cp = c(mod p);

cq = c(mod q);

up = c
dp
p (mod p);

uq = c
dq
p (mod q);

u = (bpup + bquq)(mod m);
Algorithm 3: CRT for RSA decryption

bit-sequences , the total number of squarings and multiplications in an exponentiation is inde-

pendent of the exponent. Thus, the total time can modeled as a normal distribution whose mean

and variance are dependent solely on the ciphertext and the modulus. The attacker sends pairs of

ciphertexts such that their average computation time differs by a threshold value. The attacker is

guaranteed to find the prime modulus (or its multiple) in this range. Successive reductions are

performed until the prime modulus can be searched using brute-force. The practical impact of

this attack was intensified when Brumley and Boneh demonstrated it remotely against a widely-

used cryptographic library OpenSSL[6]. Attacks that use other type of side-channel outputs, like

power consumption and acoustic leakage, to break these cryptosystems have been successfully

demonstrated as well [21].

Due to the potential of these attacks in breaking widely-used cryptographic algorithms, sev-

eral countermeasures have also been developed and implemented to thwart them. Timing at-

tacks can be prevented trivially if the decryption oracle always outputs the result after a constant
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amount of time. However, this constant value must be greater than the worst-case decryption time

which makes this approach highly inefficient. Köpf and Dürmuth presented a countermeasure,

input-blinding-and-bucketing, where the output of a decryption is revealed during pre-specified

windows of time [39]. This countermeasure hinders timing attacks as more ciphertext require

same amount of decryption time and is more efficient than the constant time approach.

One of the most popular countermeasure against timing attacks, exponent blinding, was pro-

posed by Kocher [37]. Here, a random salt, r, is added to the exponent d. First, an exponentiation

is performed using (r + d) as the exponent. An additional exponentiation is performed using r

as the exponent. Division of the results of these exponentiations yields the original outcome.

Since the exponent used for decrypting each ciphertext is random, the attacker cannot estimate

it. Another popular countermeasure, caching, uses memory to thwart timing attacks without

performance penalties. The results of multiplication of numerous pairs of multiplicands are pre-

computed and stored in memory. When such a pair is encountered during an exponentiation, the

algorithm simply performs a constant-time memory lookup to retrieve the output. This approach

reduces the total number of multiplications performed live during an exponentiation, reducing

timing discrepancy. Despite these measures, timing attacks remain one of the biggest threats

against modern cryptosystems and newer development need to be resilient to them.

These attacks demonstrate the negative impact side channels can have on a system’s secu-

rity. Detection and mitigation of these attacks is crucial to develop trustworthy and dependable

systems. Although there are several works that demonstrate side-channel attacks in different

setups, very few attempt to provide precise quantitative analyses that are applicable beyond spe-

cific attacks. In the next section, we discuss the advantages, and limitations of past quantitative

approaches to side-channel analyses.

9



1.2 Quantitative Analysis of Information Leakage

Primary focus of past side-channel research is on detection, demonstration, and mitigation of

specific attacks. However, demonstration of specific attack techniques on a system does not give

much insight on other (and potentially all) possible attacks that use the same vulnerability. Fur-

thermore, they do not provide insights on whether the attacker uses his resources with most effi-

ciency. For example, side-channel attacks against Tor and DSL routers remain proof-of-concepts

because the bandwidth resources required to launch attacks in real networks is enormous[18].

In the absence of quantitative analyses, security guarantees of countermeasures cannot be

established. This leads to the use of informal countermeasures which may lead to a false sense of

security. For example, exponent blinding was traditionally believed to prevent all timing attacks

and was adopted into most standard cryptographic libraries. Recent results, however, show that

timing attacks may still be possible [59]. Similarly, use of firewalls and anonymous networks,

traditionally accepted as countermeasures to traffic analyses, have been shown to not prevent

side-channel attacks in communication networks [61],[47],[28].

Quantitative approaches can contribute to all three dimensions of side-channel research: de-

tection, demonstration, and mitigation of attacks. For example, one of the most powerful prac-

tical attacks against RSA developed by Brumley and Boneh [6], relied on the theoretical basis

developed Schindler [58]. Later in this thesis, we demonstrate how quantitative models enable

the development of optimal attack strategies against packet schedulers for a given attack budget.

These optimal strategies achieve up to 1300% gain in information leakage than proof-of-concept

strategies [27]. Quantitative analyses can also provide system designers the knowledge of sys-

tem parameters that leak the least amount of information. Several design choices can also benefit

from such analyses. For example, in this thesis we compute the leakage of modular exponenti-

ation based cryptographic algorithms and study the impact of Montgomery reduction parameter

on the leakage. This allows us to identify the value of the parameter that leaks least information.

Quantitative analyses can also help system designers develop provably-secure countermea-
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sures. Ghaderi and Srikant developed optimal mixing strategies for preserving anonymity of

users [22]. Mathur and Trappe [43] performed analyzed randomization-based countermeasures

that prevent anonymity leakage through packet length and timing characteristics. Kadloor et

al. developed mathematical models for a shared packet scheduler to develop privacy-preserving

packet scheduling schemes [36]. Similarly, Köpf and Dürmuth proposed a timing bucket-based

countermeasure to timing attacks against RSA and quantify the security provided by it [39].

The first step towards a quantitative analysis is to develop an appropriate model for the system

and select suitable metrics that measure relevant performance parameters. Information-theoretic

metrics have been favored in most existing side-channel analyses. The primary reason for this

choice is that a number of side-channels can be modeled as stochastic systems. That is, the

statistical relationship between side-channel inputs and outputs can be represented as a condi-

tional probability distribution of outputs given the inputs. The behavior of user’s inputs is also

favorably modeled as a random process; e.g., cryptographic keys as uniformly-random binary

strings and packet arrivals as Poisson/Bernoulli-distributed sequences. For such models, infor-

mation theory has a rich set of results and quantities like entropy, mutual-information, capacity,

and error-exponents [11], can be used as metrics for security properties like confidentiality and

anonymity.

Some of the past works on side channels perform information-theoretic analysis of leakage

in both cryptographic algorithms and communication networks. For cryptosystems, Gierlichs

et al. [23] abstracted a side channel as a mapping between the cryptographic key K, the side

channel inputs x1, x2, · · · , xn and the corresponding side channel outputs o1, o2, · · · , on. They

empirically computed the distribution PK(O|X) and used empirical mutual-information as a

classifier; i.e. the key K̂ was the estimate if it maximized the empirical mutual information

max
K

Hk(X) −HK(X|O). Köpf and Basin created an information-theoretic model for adaptive

side-channel attacks on a generic cryptosystem and obtained upper-bounds on the remaining

key-entropy after n uses of the channel [38]. Köpf and Dürmuth used method-of-types results
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to show that the number of bits of the cryptographic key revealed by a side-channel attack is

upper-bounded by |O| log2(n + 1), where |O| is the number of possible side channel outputs

and n is the number of observations [39][40]. Mizuno et al. used channel capacity of analog

communication channels; i.e. 1
2

√
1 + signal−power

noise−power , as a metric for attacks that employ power

consumption analysis [45]. Demme et al. used correlation between the user’s behavior and the

attacker’s observation to develop a metric called the side-channel vulnerability factor [12].

In communication networks, information-theoretic metrics have traditionally been used as

anonymity measures. Berthold et al. [4] measured the anonymity of a communication pair as the

size of the anonymity set, which is the set of all pairs that could possibly communicate. How-

ever, each communicating pair may not be equally likely to generate a specific communication

activity. For such scenarios, Serjantov and Danezis [60] provided an alternate metric in terms

of the Shannon entropy of the probability distribution over the anonymity set. Under the chosen

metric, anonymity leakage is defined as the reduction in anonymity due to the attacker’s obser-

vations. The reduction in anonymity is sometimes normalized with the a-priori anonymity to

account for different starting conditions [14]. Based on these metrics, several works have quanti-

tatively analyzed anonymity systems. Ghaderi and Srikant [22] quantified the anonymity of a mix

node under attacker’s observations and identified the strategies that maximize anonymity under

a given delay constraint. Mathur and Trappe [43] performed an information-theoretic analysis of

randomization-based countermeasures that prevent anonymity leakage through packet length and

timing characteristics. Kesdogan et al. [17] explored the notion of probabilistic anonymity for

anonymous networks and developed a countermeasure, stop-and-go mixing. Chatzikokolakis et

al. modeled anonymity protocols as noisy channels and used channel capacity as an anonymity

metric [7]. Gong et al.[27] developed a mathematical model of shared packet schedulers and

computed the information leakage in terms of the mutual information between user’s packet

arrival rate and attacker’s probing rate.

Despite significant effort on quantitative analyses of side-channel attacks, a number of limi-
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tations to current approaches exist which reduce their impact on practical system design. Specif-

ically,

• Choice of non-uniform quantitative metrics: There is significant diversity in the choice of

metrics used in the literature. Metrics used for information leakage range from reduction

in entropy to normalized mutual-information and capacity. Other metrics like side-channel

vulnerability factor, rely on correlation as opposed to entropy. The association between

these metrics and real-world performance measures, like accuracy of information learned,

has not been established. Additionally, the diversity of metrics makes it difficult to develop

relationships among them and therefore, comparative analysis becomes challenging.

• Choice of specific attack strategies: Even when a detailed model of the side channel is

available, several analyses are limited to specific and often simplistic attack strategies.

Adaptive strategies, where the attacker uses past information to decide next inputs, are gen-

erally ignored even when adaptive attacks, which are demonstrably stronger, are feasible.

As we report later in the thesis, adaptive attacks can cause significantly more information

leakage for the same resource budget. Thus, even under suitable metrics, most analyses do

not measure the worst-case leakage of the system.

The results reported in this thesis remove these limitations by providing a general side-channel

model which can be used to quantitatively analyze a wide variety of side channels. Under this

model, we define three metrics: 1) capacity, 2) reliability rate, and 3) leakage. We show that

capacity is an ill-suited metric for side-channel as it cannot guarantee accuracy of retrieved infor-

mation. Instead, we propose the use of reliability rate and leakage which measure the accuracy

of leaked information and rate of information leakage, respectively. We define notions of security

under both metrics and show that these notions are not equivalent to each other.
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1.3 Analysis of Information-leakage Metrics: Capacity, Relia-

bility Rate, and Leakage

In principle, side channels are statistical relationships between the user’s secret, attacker’s inputs,

and side-channel outputs. This relationship can be represented as a probability distribution on

side-channel outputs conditioned on side-channel inputs. A generalized side-channel model can

be developed by using this description of side channels.

1.3.1 A General Side Channel Model

A general side channel can be modeled as a discrete-time, two input-single-output system, as

illustrated in Figure1.1. In every time-slot, the attacker and user issue one input each. The

side channel produces one output that depends on the inputs and previous outputs. The attacker

observes this output and uses his observations to estimate of the user’s inputs.

User’s input process: Depending on the scenario, the user’s input can be a single value; e.g.,

a cryptographic key, or a sequence of values; e.g., a stream of packets in a network [16]. For the

first case, the user’s input is represented by a single value d ∈ D, whereas, for the latter case,

the ith input of the user is represented by di ∈ D.

Usage Mapping: The two scenarios, where the user issues a single input, d, or a sequence

of inputs, dn, are not conceptually distant from each other. The user can make a singular choice

h ∈ H about his true secret; e.g, a website, and the choice of h determines the dn; e.g., a sequence

of packets, that is input to the side channel through a mapping U : h → dn. For example,

in shared packet schedulers, the user may be assumed to generate a sequence of packets, dn,

through a random process; e.g., Bernoulli [27], or to select a website h which then determines

the sequence of packets dn [26]. In the first case, the attacker would aim to learn the sequence,

dn, while the object-of-interest in the later case is h. The mapping U is named usage mapping

because it determines how the system is used for a specific choice made by the user, for example,
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the packet arrival pattern of a chosen website. This distinction is important in distinguishing

reliability rate and leakage metrics.

Attacker’s strategy: The attacker strategy is specified by the choice of his inputs. Let xi ∈ X

represents the attacker’s ith input to the system. For a general case, xi might be chosen as an

adaptive function of all the previous inputs the attacker has issued to the system and correspond-

ing outputs; i.e. xi = f(xi−1, yi−1). After issuing n inputs to the system, xn, and observing the

corresponding side-channel outputs, yn, the attacker applies an estimator g to produce an estimate

d̂ of the user’s secret. The tuple (f, g) collectively specify the attacker’s strategy. If the attacker’s

ith input is independent of past observations, then the strategy is said to be non-adaptive.

y1, y2, · · ·

USER

d̂

Side channel

ATTACKER

x1, x2, · · ·

d ∈ D
p(yi|xi, yi−1, d) g(xn, yn)

xi = f(xi−1, yi−1)

Figure 1.1: A generic model for side channel

Side-channel model: Let yi ∈ Y be the ith output of the side channel. Then, in the most

general case, yi is dependent on all the previous inputs xi, di, and outputs yi−1. The stochastic

relationship, represented as a probability distribution P (yi|xi, di, yi−1), specifies the side channel

in entirety. The side channel is assumed to be non-anticipatory or causal; i.e. outputs do not

depends on future inputs. The side channel is called memory-less if yi is statistically independent

of xi−1, di−1, and yi−1, given xi and di. In cases where the user only makes one input; e.g., a

secret key, to the system, the side channel is described by the distribution P (yi|xi, yi−1, d). The

goal of the attacker is to learn the user’s input, d or dn (eventually h), depending on the setup.
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Definition 1. The probability of error Pe of an attacker under strategy f(), g() is defined as:

Pe ≡ P (g(xn, yn) 6= d)

Pe serves as a measure of success for any attack strategy as it quantifies reliability of infor-

mation learned under an attack strategy.

We note that Pe may not be a suitable metric in scenarios where the attacker can tolerate some

distortion in the information learned. A different metric, such as average Hamming or Euclidean

distance, must be used in such scenario. For the scope of this work, we limit the discussion to

Pe. With a general stochastic model for side channels, we proceed with our discussion on the

right metrics to quantify information leakage.

1.3.2 Comparison of Quantitative Metrics of Information Leakage

Intuitively, an information flows, such as a side channel, is a statistical relationship between the

inputs and outputs of the flow that allow estimation of the input by observing the output. Other

examples of information flows are classical transmission channels or covert channels which can

be used by a Trojan Horse to cross system’s access control boundaries. For any information flow,

a metric of interest is the size of the flow; i.e. number of bits transferred/leaked per channel use.

At the same time, it is also important to ensure that the information transferred/leaked is accurate

(reliable) and that the metric can be easily generalized to analyze different setups that use the

same channel.

For transmission channels and covert channels, the notion of capacity fulfills all the require-

ments [25]. It measures the maximum rate (bits per channel use) of information transfer while

satisfying reliability constraints. Capacity also bounds the rate achieved by any communica-

tion system which uses the underlying channel. It serves as a performance benchmark for all

encoding-decoding schemes, thus providing a general analysis for the given channel. While ca-

pacity may be an attractive metric for analyzing side channels, to date, no work has been able to
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demonstrate a direct relation between side-channel capacity and vanishingly low Pe. Discourag-

ingly, as we show later in this section, this association is impossible for side channels.

This motivates us to propose the use of two metrics: reliability rate and leakage, that measure

accuracy of information and leakage rate, separately. Both metrics are applied to distinct side-

channel setups, reliability rate for a single user input and leakage for a sequence of inputs from

the user. Reliability rate is measured as the optimal error-exponent of the attacker in a hypothesis-

testing framework, where he estimates the underlying user input d ∈ D. A positive reliability rate

ensures that Pe approaches zero as the number of attacker’s inputs approaches ∞. In contrast,

leakage is measured in terms of the asymptotic mutual-information rate between the user’s input

sequence and the attacker’s input-output sequence. Since leakage measurement is independent of

the usage mapping, the analysis applies to all mappings, providing a new metric that is distinct

from the reliability rate. Table 1.1 summarizes how each metric fares along the directions of

reliability and generality. We now define each metric formally, which enables us to provide rigor

to intuition.

Metric Reliability Generality

Capacity 3 3

Reliability rate 3 7

Leakage 7 3

Table 1.1: Performance of different metrics on two aspects: reliability of information and gener-

alization over all security parameters

Capacity

We first review the definition of channel capacity for classical transmission channels and use it

to develop a similar definition for side-channels. In the case of classical transmission channels,

channel capacity measures the maximum number of bits that can be reliably transmitted through
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the channel. The transmitter chooses a message, M ∈ M, that needs to be transmitted over

a discrete memory-less channel (DMC). The channel takes inputs xi ∈ X and produces corre-

sponding outputs yi ∈ Y at the receiver. The channel is specified by the stochastic mapping

P (yi|xi). Given the message, M , the encoder chooses an n-length code word, xn through an

encoding function f :M→ X n. The receiver receives a series of outputs, yn, produced by the

channel. Using yn, the receiver estimates the transmitted message M̂ using a decoding function,

g : Yn → M. A error is made if M̂ 6= M . A rate R is said to be admissible, if there exist a

number n, and encoding function, f , and a decoding function, g such that

lim
n→∞

P (M̂ 6= M) = 0 and lim
n→∞

log |M|
n

≥ R

The channel capacity is defined as the maximum achievable rate; i.e.

C = sup
R is admissible

R

For a DMC specified by the probability distribution P (y|x),

C = max
p(x)

I(X;Y ).

We formally define the capacity of a general side channel model along the same lines.

Definition 2. A side-channel rate,R, is said to be admissible if there exists an encoding f() and

an estimator g() such that

(1) lim
N→∞

Pe = 0

(2) lim
N→∞

logm

N
≥ R

Definition 3. The capacity, C, of the side channel is defined as the supremum of all admissible

rates, i.e.

C = sup
R is admissible

R
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This definition essentially provides a measure for the maximum asymptotic rate at which

the user’s information can be learned by the attacker while ensuring reliability of information

learned. However, this definition is ill-suited for a general side-channel for the following reasons.

• The side-channel probability transition function P (yi|xi, d) does not scale with the increase

in the user’s input space. For example, the side-channel description for 256-bit RSA is

completely different that for 512-bit RSA. This implies that number of inputs required to

achieve a given Pe need not scale exponentially with the size of the secret.

• Alternatively, if the user’s input space is fixed, then the number of bits that the attacker

needs to learn is finite and therefore, the asymptotic capacity is zero.

• The user’s inputs to the side channel depend on the usage mapping and therefore, cannot

be guaranteed to have a minimum separation required to achieve low probability of error.

• Existence of capacity relies on the existence of sequences (code words) that lead to disjoint

output sequences. The encoder selects one of such sequences to transmit a specific mes-

sage. This, however, requires the knowledge of the message that needs to be transmitted.

In the case of side-channel, the choice of the secret is made by the user and is unknown to

the attacker, prohibiting him from selecting optimal code words.

In the absence of a viable definition of side-channel capacity, we formulate alternate metrics:

reliability rate and leakage to measure accuracy and rate of information leakage.

Reliability rate

Irrespective of the form of information of the user, a side channel attack can be modeled as a

multi-hypothesis testing problem. The user’s input to the side channel is either a single secret d ∈

D or a sequence of inputs, dn which may be specified by his secret h through a usage mapping,

U : h → dn. The attacker issues n inputs, xn to the system (adaptively or non-adaptively)

and observes the corresponding n-output vector yn. Using xn and yn, the attacker identifies the

underlying hypothesis d̂ (or ĥ). The attacker’s probability of error w.r.t. ith hypothesis is given
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by

Pe(i) = P [d̂ 6= di|di]

The average probability of error Pe is given by,

Pe =
∑
di

P (di)Pe(i).

The reliability rate of an attack strategy, specified by the input distribution f() and the clas-

sifier g(), is defined as,

reliabilityrate = lim
n→∞

− logPe
n

Reliability rate essentially measures the asymptotic exponential-rate at which the probability

of error decreases with the number of samples n. The higher the reliability rate, the faster the

probability of error reduces which implies higher accuracy. A positive reliability rate ensures

that the Pe goes to 0 with increasing n. This metric is very effective at comparing different attack

strategies for the same setup. However, the analysis of reliability rate varies for different D,

prior distributions on the hypothesis, or different usage mappings and is not general. To provide

generality of analysis, we next define the leakage metric.

Leakage

Leakage is defined for the scenario when the user issues a sequence of inputs, dn. Leakage

attempts to measure the asymptotic mutual information rate between the user’s input and the

attacker’s observations, xn and yn. This is is defined as follows.

Definition 1. Leakage of a side channel, L, for an attack strategy p(yn|yn, wn), is defined as:

L = lim
n→∞

1− H(Dn||Xn, Y n)

H(Dn||Xn)

where, H( || ) represents causally-conditioned entropy [42]. Leakage has certain favorable

properties:
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• L ∈ (0, 1), where leakage of 0 implies no information leakage but leakage of 1 implies

total information leakage

• Since leakage measures the mutual information between the direct inputs and outputs of the

side channel, it is independent of usage mappings. This has an advantage over reliability

rate which is defined for a specific usage mapping and therefore, more general.

• While leakage cannot be used to provide strong bounds on Pe, it can be used to provide

bounds on other performance metrics, such as average distortion.

Although reliability rate and leakage complement each other, in terms of computing the

accuracy and the rate of information leakage, these metrics are not equivalent. Since leakage

quantifies the amount of information leaked about final side-channel inputs from the user, secu-

rity under this metric may be considered intuitively stronger. Notions of semantic security under

each criteria can be defined as,

Definition 2. A system is said to be secure under leakage criteria; i.e. L − secure, if the side-

channel leakage is 0. Similarly, a system is said to be secure under the reliability rate criteria;

i.e. R− secure, if the reliability rate is 0.

Then, we have

Theorem 1. 1) The security of a system under the leakage criteria does not imply the security of

system under the reliability rate criteria; i.e.

L− secure; R− secure

2) The security of a system under the reliability rate criteria does not imply the security of

system under the leakage criteria; i.e.

R− secure; L− secure

That is, neither of these notions of security can guarantee the other.

Proof. We create counterexamples when both of these relationships are true.

1) Consider a channel in which the output of the channel, yi is noiseless for i = {0, · · · , log2 |H|}
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and completely random and independent of the inputs for i > log2 |H| . In that case, the user

might leak-out the hypothesis, h during the first log2 |H| by simply leaking the secret. In this

case, since the remaining y are independent of the inputs, the limiting mutual information-rate

will be 0. Thus, the system will be L− secure but not R− secure.

2) To show the lack of a converse, we provide a different counterexample that where the

system is R−secure but not L−secure. Consider the example of side channel in packet sched-

ulers. Here, the leakage of the system measures the mutual information between the attacker’s

observations and the user’s packet arrival pattern. Assume that the leakage of the system is 1; i.e.

the attacker can learn the user’s packet arrival pattern with complete certainty. Even in this case,

if all websites map to the same the packet arrival pattern; e.g., a constant bit-rate traffic stream,

the attacker cannot distinguish between any two website by performing a side channel attack; i.e.

the system is R− secure but not L− secure. This shows that R− secure; L− secure, which

completes the proof.

This theorem shows that these two criteria for security against side-channel attacks are dif-

ferent from each other and therefore, the computation of each of them provides different insights

on the security of systems. Using this analysis as a foundation, the thesis makes the following

contributions.

1.4 Contributions

The first contribution of the thesis is the analysis of information leakage metrics presented in

the previous section. We use the reliability rate and leakage metrics to analyze three different

side channels in : a) communication end-devices, b) network components, and c) cryptographic

algorithms.
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Side channels in communication end-points

Side channels present in a communication end-point device reveal its busy/idle activity status.

Correlation in such activity among multiple parties can leak private communication relationships

represented by call-records. We develop a mathematical model for Private Communication De-

tection of two parties where the attacker sends periodically probes each party and observes their

busy/idle status over a period of time. He uses this information to learn call-records and breach

caller-callee anonymity. For this model,

• We compute the reliability rate of the attacker in detecting private communication between

these parties and analyze its relationship with communication parameters and probing rate

of the attacker.

• For two communicating parties, we compute the leakage of their call-record information

achieved by PCD. We analyze the impact of observation noise on anonymity leakage and

compute the reduction in leakage in terms of the channel capacity of noisy-channel.

• We develop resource-randomization based countermeasures against PCD. These counter-

measure work by adding artificial noise in the attacker’s observations. The anonymity

gain of such countermeasures is defined in terms of the normalized reduction in anonymity

leakage of the system. We show that our countermeasures can potentially thwart PCD

completely.

Side channels in network components

Side channel present in network components, such as packet schedulers, allow an attacker to

learn traffic patterns of private traffic streams. Knowledge of these patterns can be used to iden-

tify the source or the path of traffic stream, breaching traffic anonymity. We use the theoretical

model of first-come-first-serve packet scheduler, developed by Gong et al. [27], to identify op-

timal attack strategies for leakage of traffic patterns. Optimal strategies make efficient use of

the attacker’s bandwidth resources and allow him to perform large-scale attacks. In each of the
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following cases, optimal strategies are identified by solving linear programs which make it easy

for an attacker with moderate capabilities to use them. Specifically,

• We discover optimal non-adaptive attack strategies for a given attack bandwidth and demon-

strate upto 1000% gain in leakage compared to geometric probing of [27].

• We develop a new leakage metric to analyze adaptive strategies and demonstrate upto

30% increase in leakage compared to optimal non-adaptive strategies, highlighting the

importance of analyzing adaptive side-channel attack strategies.

• We identify optimal real-world strategies where the attacker has a limited view of past

outputs and show that they achieve higher leakage compared to non-adaptive strategies for

the same attack bandwidth.

Side channels in cryptographic algorithms

Decryption times of chosen ciphertexts allow an attacker to learn the secret key or modulus used

in a modular exponentiation-based cryptosystems. For quantifying information leakage in cryp-

tographic algorithms using our metrics, we employ Schindler’s stochastic model for computation

times of a modular exponentiation [58]. In particular,

• We compute the optimal reliability rate of an attacker in estimating secret prime modulus

for RSA with CRT.

• We develop a novel asymptotic model for the timing side channel in Montgomery Multipli-

cation and show that the leakage of the algorithm computed under this model provides an

upper bound for the side-channel leakage of any cryptosystem that uses the Montgomery

Multiplication routine.

• We finally analyze two well-known countermeasures to timing attacks: exponent blinding

and caching. We compute the reduction in leakage under each countermeasure and identify

the conditions under which one outperforms the other.
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In addition to analyzing side-channel attacks and countermeasures under these diverse sys-

tems, this thesis also provides a method for quantitative analysis of side-channel attacks in other

systems.
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Chapter 2

Side Channels in Communication

End-point Devices

Communication records often reveal private relationships between two communicating parties.

For example, they capture interaction frequency over time, evidence of recent interaction, com-

munication reciprocity, and the existence of at least one mutual friend that links the two parties.

These parameters provide a fairly accurate indication of tie strength between two parties [24]. As

a consequence, communication-record analysis has been one of the key tools used by analysts to

discover the social milieu of targeted individuals or groups. Naturally, access to communication

records is restricted by law in many countries and carefully controlled by service providers who

collect them [29].

Privacy concerns raised by wholesale collection of VoIP and other call records have led to

question of whether collection of such records could be thwarted by the use of private networks.

These networks would not merely provide the confidentiality of the call content. Equally im-

portantly, they could also provide both flow anonymity and user pseudonymity properties, which

would make wholesale collection of call records challenging. However, even if private networks

could support VoIP calls in the future, they would still be vulnerable to a side-channel attack,

known as private communication detection (PCD) [35]. In a PCD attack, an analyst, henceforth
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called the attacker, first detects the busy/idle activity status of a target by exploiting resource-

contention side channels present in a target’s VoIP device. He then correlates this information for

multiple targets over a period of time and discovers their pairwise call records. Such attacks have

been demonstrated in a number of common communication technologies including VoIP, Wi-Fi,

3G, and instant messaging [34] [33]. More importantly, they can be launched remotely, at low

cost, and do not require direct manipulation of the targets’ communication resources. However,

they require that an attacker has the ability to send/receive messages to/from the targeted com-

munication devices without detection. Clearly, the mere correlation of the activity of different
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(FA)	  

.	  

.	  

.	  

.	  
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.	  

.	  

.	  

.	  

.	  

.	  

Eve	  

Busy	  or	  idle	   Busy	  or	  idle	  

Figure 2.1: Network model

targets may not necessarily imply the existence of a relationship between them. For example, if

the attacker’s measurement of a target’s busy/idle activity status is noisy, the correlation between

the observed activities cannot be relied upon. Furthermore, in the presence of multiple users in

the network, two targets may be busy at the same time while talking to other communication

partners and not with each other. Hence, simplistic analyses might indicate the existence of a

relationship when none exists. Accurate analyses become important both for privacy advocates,

who want to quantify the amount of anonymity leakage caused by PCD and the efficacy of coun-

termeasures, and for the call-record collector (i.e., the attacker), who may have to rely on PCD
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when no other collection means are available; e.g., in a foreign jurisdiction.

In this chapter, we study the efficacy of PCD for a two-target scenario illustrated in Figure 2.1.

Here an attacker, Eve, periodically probes two targets, Alice and Bob, aiming to collect enough

activity logs and discover whether a relationship exists, with demonstrable accuracy. We develop

a mathematical model to represent the calling behavior of the two targets and the probing strategy

of the attacker. Under this model, we make the following contributions.

• Reliability rate of the attacker in estimating communication relationships: We pro-

vide upper bounds on the probability of an attacker and the reliability rate in accurately

classifying the communication relationship between the two targets (i.e., as existent or

non-existent). We analyze its relationship with parameters like the number of samples

collected, the probe rate, and call parameters.

• Quantitative analysis of the anonymity leakage: Once the communication relationship

between the two targets is accurately established, the attacker aims to learn their commu-

nication details; e.g., the time and length of each conversation between them. We compute

the leakage of call-record information due to the knowledge of activity-logs under the def-

inition presented in Chapter 1.

• Countermeasures and their efficacy: We study the efficacy of practical countermeasures,

such as resource randomization and firewalls, which thwart PCD attacks in a quantifiable

manner. Using our leakage model, we measure the efficacy of a countermeasure as the

reduction in the anonymity leakage. Our analysis shows that resource randomization out-

performs the use of firewalls and has the potential to completely thwart PCD by introducing

noise in the adversary’s side channel. In some cases, however, the use of randomization is

limited due to system usability constraints.
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2.1 System Description

In this section, we present the employed network and call arrival-service model for analyzing

PCD in a two-target scenario and the reasoning behind the assumptions made for the analysis.

First, we specify the network model and assumptions.

2.1.1 Network Model

We consider a simple communication network consisting of two targets: Alice and Bob, an

attacker Eve, and third-parties: FA and FB, as shown in Figure 2.1. Eve is aware of the existence

of a communication relationship between Alice-FA and Bob-FB but does not have any a-priori

information about the existence of the communication relationship between Alice and Bob, either

existent or non-existent. Eve probes both Alice and Bob but is not capable of probing either FA

or FB. While, this model assumes that both Alice and Bob have only one third-party friend each,

under appropriate modeling of call arrival-service, the existence of multiple third-party friends

can be abstracted by that of a single entity, FA or FB. For example, let Alice have two third-

party friends: Carol and David. If Alice speaks to Carol for 5 minutes in an hour over multiple

calls and to David for 15 minutes in an hour, then they both may be represented by one friend,

with whom Alice speaks for 20 minutes in an hour. This abstraction is warranted because Eve

is not interested in the communication relationship or call records between Alice and her third-

party friends, and also explains Eve’s inability to probe FA or FB as they may not be unique

individuals. In Section 2.2, we provide the call arrival-service model that enables us to use this

abstraction.

Remark 1: Realistically, Alice and Bob may have common friends; i.e. FA ∩ FB 6= ∅, but we

assume that Alice and Bob do not talk to a mutual friend simultaneously. This assumption is

justified as we are only interested in the pair-wise communication relationships of the targets and

not in teleconferencing over multiple parties.

Remark 2: The attacker is only required to know the aggregate communication parameters; i.e.
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call arrival-service rates between Alice, Bob, and their third-party friends. It is not required to

possess knowledge of either the identities or number of third-party friends of Alice and Bob. The

attacker’s lack of knowledge of the identities of the third-party friends is another reason for his

inability to probe them. This model arises in many real-world scenarios, such as,

• Detecting communication relationships across privacy-preserving jurisdictions: Con-

sider two countries that authorize their law enforcement agencies to perform bulk domestic

call records collection, and assume that these agencies cooperate to detect communication

relationships between selected individuals across their national border. However, privacy

protection laws may prevent exchanging call records across national borders, but allow the

sharing of aggregate communication parameters, since they do not reveal individuals’ iden-

tities or call patterns. Our PCD model enables the detection of call relationships between

such individuals without requiring exchanges of private foreign call records.

• Detecting communication relationships using past call records: Legally-authorized,

bulk call record collection is typically restricted in time; e.g., six months. Suppose that re-

tention of derived aggregate communication parameters beyond the temporary call record

authorization is not prevented, since it does not reveal individuals’ identities or call pat-

terns. Under these circumstances,our PCD model enables the detection of communication

relationship between two selected individuals based on past aggregate communication pa-

rameters, since PCD can be performed without any legal restrictions; i.e., access to public

signals cannot be prevented.

The above examples show that even when individuals’ identities or call patterns are not revealed

by innocuous aggregate communication parameters, PCD can in fact lead to call record collec-

tion. Next, we specify the call arrival-service model and assumptions.
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2.1.2 Call Arrival-Service Model

Call arrival process: Call arrivals between any two communicating parties follow the Poisson

call arrival process with a corresponding arrival rate. The Poisson arrival process has been used

extensively to model call-arrivals in telephony systems in the literature. Empirical studies have

also verified that the Poisson distribution models call arrivals at a real telecommunication node,

such as a telephone exchange, accurately [65]. Additionally, we assume that all communicating

parties are non-colluding and no ancillary information about the social graph of third-parties is

available. Under these conditions, calling behavior of different parties is independent of each

other.

Call service model: The service time for each call, or the call duration, is assumed to follow

the i.i.d exponential distribution with an appropriate rate parameter.

Time in the system is discretized into blocks of length “∆” seconds, which serves as the

fundamental unit of time in the system. ∆ is assumed to be sufficiently small so that the device

can only undergo one transition per time-slot.

A simple example: Consider a device A that only has a single communication partner B.

Calls arrive on this line following the Poisson arrival process with rate λ. Thus, the inter-arrival

time between consecutive calls follows an i.i.d. exponential distribution. Also, call duration

follows the exponential distribution with parameter µ. In any given time-slot, A can be on a call

with B (busy) or not (idle). If A is idle in the current time-slot, then it remains idle in the next

time-slot if there is no call arrival in the next ∆ seconds; i.e. with probability e−λ∆. A transitions

to busy in the next time-slot with probability 1 − e−λ∆. Similarly, if A is busy in the current

time-slot, then it remains busy in the next time-slot if the remaining call duration is greater than

∆ seconds; i.e. with probability e−µ∆. A transitions from busy to idle in the next time-slot with

probability 1 − e−µ∆. Due to the memorylessness of the call service time and call inter-arrival

time distribution (both exponential), the calling behavior of A can be represented as a stationary

first-order Markov chain, as depicted in Figure 2.2.

32



e−µ∆ 1− e−µ∆
e−λ∆

1− e−λ∆

BUSY IDLE

Figure 2.2: Transition diagram for a single device

Another salient feature of the Poisson arrival model is that it satisfies the condition mentioned

in Section 3.1, i.e. capturing the effect of multiple third-party friends in a single third-party with

appropriate modifications in the rate parameters. Specifically, if Alice has two friends Carol and

David, and Alice speaks to Carol with a rate λC and to David with a rate λD, then the probability

that Alice remains idle in the next time-slot equals the probability of no call arrivals from either

Carol or David: i.e. e−λC∆e−λD∆ = e−(λC+λD)∆ (due to independence of call-arrivals from

different parties). This makes the existence of Carol and David equivalent to a single third party

friend who speaks to Alice with a call rate λC + λD. Similar abstraction can be done for call

duration.

Now, we extend this model to represent the calling behavior of Alice and Bob in two sce-

narios: a) when they do not have a communication relationship with each other and b) when

they have a communication relationship with each other. In scenario a), Alice and Bob have so-

cial relationships with FA and FB respectively but not with each other. Therefore, their isolated

individual behavior can be represented by the model in Figure 2.2 albeit with different parame-

ters (λA, µA) and (λB, µB). In the absence of a communication relationship between them, the

behavior of Alice and Bob is independent of each other and therefore, the collective transition

probabilities are the product of respective individual transition probabilities. Alice and Bob can

have four possible states: (Alice is idle, Bob is idle), (Alice is idle, Bob communicates with FB),

(Alice communicates with FA, Bob is idle), and (Alice communicated with FA, Bob communi-

cates with FB) which are represented as (0,0), (0,1), (1,0), and (1,1) respectively. The collective

state transition diagram is shown in Figure 2.3.
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Figure 2.3: Joint transition diagram when no relationship exists between Alice and Bob

The stationary distribution (π) of this Markov chain can be calculated as:

π(00) =

(
1− e−µA∆

) (
1− e−µB∆

)
(2− e−λA∆ − e−µA∆) (2− e−λB∆ − e−µB∆)

π(01) =

(
1− e−µA∆

) (
1− e−λB∆

)
(2− e−λA∆ − e−µA∆) (2− e−λB∆ − e−µB∆)

π(10) =

(
1− e−λA∆

) (
1− e−µB∆

)
(2− e−λA∆ − e−µA∆) (2− e−λB∆ − e−µB∆)

π(11) =

(
1− e−λA∆

) (
1− e−λB∆

)
(2− e−λA∆ − e−µA∆) (2− e−λB∆ − e−µB∆)

In scenario b), Alice and Bob have a communication relationship with each other and there-

fore, their behavior is not independent of each other, specifically when they are on a call with

each other. Let (λAB, µAB) be the call arrival-service parameters for communication between

Alice and Bob. Alice and Bob can jointly be in 5 possible states: (Alice is idle, Bob is idle),

(Alice is idle, Bob is communicating with FB), (Alice is communicating with FA, Bob is idle),

(Alice is communicating with FA, Bob is communicating with FB), and (Alice communicates

with Bob) which are represented as (0,0), (0,1), (1,0), (1,1), and (1, 1) respectively. When Alice

and Bob speak to each other, they must return to the idle state before establishing any other call

as “∆” is assumed to be sufficiently small to prohibit multiple transitions in one time-slot. In the

case of a collision between calls from different parties arriving in the same time-slot, preference
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is given to calls between Alice and Bob; i.e., they can establish calls to third parties in a time-slot

only if they do not receive a call from each other. This assumption is required to ensure that sum

of transition probabilities equals 1 but does not particularly impact or favor our analysis. This is

the case because ∆ is sufficiently small such that the likelihood of independent call-arrivals from

different parties to the same user in the same time-slot is small. The analysis can be done under

an alternate assumption; e.g., priority to calls from third-parties, with minor modifications to the

state transition probabilities. The collective state transition diagram for Alice and Bob’s activity

when they have a communication relationship is shown in Figure 2.4.
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Figure 2.4: Joint transition diagram when a relationship exists between Alice and Bob

The stationary distribution (πi) of this Markov chain can be calculated as:

π00 =
1

1 +
∑

i∈{01,10,11,11}

πi

π00

where,

π01 =
e−λAB∆

(
1− e−µA∆

) (
1− e−λB∆

)
(1− e−µA∆) (1− e−µB∆))

π00

π10 =
e−λAB∆

(
1− e−λA∆

) (
1− e−µB∆

)
(1− e−µA∆) (1− e−µB∆)

π00

π11 =
e−λAB∆

(
1− e−λA∆

) (
1− e−λB∆

)
(1− e−µA∆) (1− e−µB∆)

π00

π11 =
1− e−λAB∆

1− e−µAB∆
π00
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Finally, Eve does not get to observe the actual calling behavior but only the activities of both

the targets. In that case, it cannot distinguish between the states (1,1) and (1, 1). We denote

“busy” as 1 and “idle” as 0 to represent the activity of a device, which makes the mapping from

the calling status to activity-logs as shown in Figure 2.5.
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Figure 2.5: Mapping from calling behavior to activities

With the network and call arrival-service model specified, we move to the modeling of the

busy/idle probing process of the attacker, in the next section.

2.2 Probing

The core of private communication detection is the detection of the busy/idle activity status of

a target device. Side channel attacks can be employed to achieve this goal. In session initiation

protocol (SIP) based VoIP networks, a resource saturation side channel can be exploited by an or-

dinary user of the network; i.e. without any special privileges, to acquire busy/idle activity status

information for other users [35]. Every SIP device maintains a finite buffer that is used to store

the context of protocol negotiation until a response is generated for the corresponding request.

Each SIP request occupies one slot on the buffer. If the buffer gets full, the full-buffer-condition

can be learned by the attacker due to generation of a different response by the target device. To
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perform busy/idle status detection, the attacker sends periodic SIP requests or probes (modified

so that they don’t alarm the target by ringing the device) to the target device and counts the num-

ber of probes required to cause the full-buffer-condition. Depending on the number of probes

and the size of the buffer (as per the device specification), the attacker can learn if the device

has an existing SIP request or not, thus revealing the busy/idle status of the device. Similarly, in

Wi-Fi networks, the attacker can perform busy/idle status detection either by computing delay of

his probes, as VoIP packets get priority, or sensing the Wi-Fi channel [33, 34].

Periodic probing strategy: To accurately model the periodic probing process of real-world

attacks demonstrated by Jong and Gligor [34, 35], we assume that Eve sends probes to both

Alice and Bob every T seconds and obtains their busy/idle status information over n samples.

The time-gap between consecutive probes, T , is restricted to being an integer multiple of ∆; i.e.

T = r∆ for some integer r. The probe rate of the attacker is defined as 1/T . If r > 1, then the

attacker only gets to observe the activity of Alice and Bob every r transitions. IfM represents the

probability transition matrix of calling behavior over consecutive time-slots, then the probability

transition matrix over every r time-slots can be computed as M r. As r → ∞, M r tends to the

stationary distribution of the Markov chain. This implies that for small probe rate of the attacker,

the observed activity at a given probe instance is independent of the activity observed in the past.

Observation noise: In the case of SIP-based VoIP networks, busy/idle status detection is done

by observing the full-buffer-condition. This technique has no significant source of noise except

packet drop which can be ignored for a wired medium. Therefore, we assume that the probing

process of the attacker is noiseless. This assumption may not be true for other busy/idle detection

mechanism, such as in Wi-Fi networks. However, modeling of noise in the attacker’s observation

process can always be done separately as a noisy channel between the true activity status and the

activity status observed by the attacker.

Probe timeliness: Another assumption of this analysis is the timeliness of the probes, i.e. the

probes do not incur significant propagation delay and notify the attacker about the instantaneous
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activity of the target. In the case of SIP-based VoIP networks, where packets are required to have

transmission delay of less than 400 ms, this assumption is reasonable because the scale of call

arrival-service is typically much larger than 400 ms. For example, a typical conversation lasts

at least 30 seconds. Similarly, in the case of Wi-Fi networks where busy/idle detection can be

done by sensing the channel, the probing delay is small to not cause any significant shift in the

time-series of the activities of the two targets. Therefore, this assumption is justified.

Table 2.1: Notation

P r Probability transition matrix over joint calling

behavior in the case of no communication relationship

and probe rate 1/r∆

pri→j Individual transition probability

from state i to j under P r

πi Steady state probability of state i under P

pr(crn) Probability of observing a given

call record crn under P r

P
r

Probability transition matrix over joint calling

behavior in the case of communication relationship

and probe rate 1/r∆

pri→j Transition probability

from state i to j under P
r

πi Steady state probability of state i under P

pr(crn) Probability of observing a given

call-record (crn) under P
r

T (aln) Set of all call-record (crn) that map to aln

Table 2.1 lists the notation used in this analysis. With the system model and assumptions in
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place, we analyze the accuracy of the attacker in detecting communication relationships in the

next section.

2.3 Estimation of Communication Relationships

With the information gathered through a PCD attack on Alice and Bob, the first analysis that the

attacker Eve can perform is to learn whether Alice and Bob have a communication relationship

or not. This analysis can be formulated as a binary hypothesis testing problem where the null

hypothesis (H0) assumes that there is no relationship and the alternate hypothesis (H1) assumes

that a communication relationship exists. The Markov models shown in Figure 2.3 and 2.4 can

be used to describe calling behavior of Alice and Bob under H0 and H1 respectively.

2.3.1 Analysis of the Maximum A-posteriori Probability (MAP) Detector

In the absence of gathered information; i.e. a-priori, Eve may have unequal biases towards H0

andH1. For example, in social scenarios, a suspicious person may have a strong reason to believe

in the existence of the relationship between his/her partner and another person, which leads to

him/her using PCD. In law-enforcement scenarios, intelligence received from other sources may

indicate the existence of a relationship between Alice and Bob which requires confirmation by

PCD. We denote, the a-priori probability of H0 and H1 as η and 1 − η respectively, where

0 < η < 1. After observing a n-length activity-log sequence (aln) for Alice and Bob, the

attacker can choose any detection rule D to detect the underlying hypothesis.

Definition 4. The probability of error Pe achieved by a detection rule, D, is defined as the

probability that the attacker’s estimate is incorrect.

Pe = P (D(aln) 6= the true hypothesis)

= P (H0)P (D(aln) 6= H0|H0) + P (H1)P (D(aln) 6= H1|H1)
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The choice of D to minimize Pe is the maximum a-posteriori probability (MAP) rule, which

is specified as

MAP (aln) =


H0 if(1− η)P (aln|H0) ≥ ηP (aln|H1);

H1 if(1− η)P (aln|H0) < ηP (aln|H1)

The Pe achieved by the MAP rule can be bounded on the above, in terms of the system

parameters, as follows:

Pe = (1− η)
∑
aln

min

(
P (aln|H0);

η

1− η
P (aln|H1)

)
a

≤
√
η(1− η)

∑
aln

√
P (aln|H0).P (aln|H1)

≤
√
η(1− η)

∑
aln

√
pr(aln).

∑
crn∈T (aln)

pr(crn)

b

≤
√
η(1− η)

∑
aln

 ∑
crn∈T (aln)

√
pr(aln).pr(crn)


c
=

√
η(1− η)||VX(r)n||1 (2.1)

where || ||1 is the l1 vector norm,

V = [
√
π00π00

√
π01π01

√
π10π10

√
π11π11

√
π11π11]

and X(r) is a 5× 5 matrix
[
x

(r)
i,j

]
such that,

x
(r)
i,j =



√
pri→jp

r
i→j for i, j ∈ {00, 01, 10, 11};

√
pri→4p

r
i→5 for i ∈ {00, 01, 10, 11}, j = 11;√

pr4→jp
r
5→j for i = 11, j ∈ {00, 01, 10, 11};

√
pr4→4p

r
5→5 for i = j = 11;

a) Application of Bhattacharya bound; i.e. min(a, b) ≤
√
ab, for a, b > 0.

b) For a, b > 0,
√
a+ b ≤

√
a+
√
b.

c) Representation of sum in terms of matrix multiplication.
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Equation (2.1) shows that the upper-bound on Pe for the MAP rule is a concave function of

η and is maximized for η = 1/2. This could lead to an incorrect assertion that the efficacy of

PCD increases with increased bias of the attacker. In the case of PCD, another equally-important

performance metric to consider is the probability of false positives; i.e. probability of incorrectly

estimating communication between Alice and Bob even when there is none. In particular, if

communication relationships revealed by PCD analysis are used as judicial evidence, then a

threshold performance with regards to P (false− positives) may be mandated by law to prevent

false indictments. We provide an upper-bound on P (false− positives) achieved by the MAP

detector in terms of the communication and probing parameters, and the number of collected

samples, n.

Theorem 2. The probability of false positives, P (false− positives) ≡ P (MAP (ALn) = H1|H0),

of a MAP detector is upper-bounded by:

P (false− positives) ≤
√

η

1− η
||VX(r)n||1

Proof. P (false− positives) is equal to the probability of the algorithm estimating H1 whereas

H0 is the true hypothesis.

Pe = P (H0)P (MAP (aln) = H1|H0) + P (H1)P (MAP (aln) = H0|H1)

≥ (1− η)P (MAP (aln) = H1|H0)

This implies P (false− positives ≤ Pe/(1− η)). From equation (1), we get the final inequality.

Theorem 2 implies that to the attacker needs to collect more samples to achieve the same

upper-bound on P (false− positives) as his a-priori bias towards H1 increases. This ensures that

the attacker bias does not dominate observed data, and acts as a safeguard. It is also important

to understand the impact of other parameters, particularly the time gap between the attacker’s

probes, r, and the call arrival rate between Alice and Bob, λAB, on P (false− positives). Fig-
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Figure 2.6: Upper bound on P (false− positives) vs the number of samples (n)

ure 2.6a shows that the upper-bound on the probability of false-positives decreases with increas-

ing r. This is because for the same number of probes, n, a lower probe rate regime (higher r)

observes the system for a longer time and is more likely to capture a communication between

Alice and Bob. However, if the time-frame for the attack is fixed, a higher probe rate regime ac-

quires higher number of samples and achieves higher accuracy. The plot of the accuracy of PCD

for that case is not shown here. Figure 2.6b shows the plot of the probability of false-negatives

vs λAB. Here, for a constant probe rate, the accuracy of PCD increases with λAB as the attacker

is more likely to capture a conversation between Alice and Bob. Figures 2.6a and 2.6b were gen-

erated with the following parameter values: ∆ = 0.5 seconds, µAB = µA = µB = 300 seconds,

λA = λB = 1 call/hr, and η = 0.0001.

2.3.2 Analysis of the Neyman-Pearson Detector

While the MAP rule minimizes the average probability of error (Pe), in certain scenarios, it

is relevant to minimize P (false− positives) and P (false− negatives) individually. As stated

earlier, if communication relationships revealed by PCD are to be used as judicial evidence, then

law may mandate a upper-limit, α ∈ (0, 1) on P (false− positives). The attacker, which may be
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a law-enforcement agency, may wish to minimize the P (false− negatives), subject to an upper-

limit on P (false− positives). The decision rule that achieves this goal is the logarithmic ratio

test (LRT), also known as the Neyman-Pearson detector [9], which is defined as

LRT (aln) =


H0 if log2

P (aln|H1)
P (aln|H0)

≥ γ;

H1 if log2
P (aln|H1)
P (aln|H0)

< γ

γ is selected so that P
[
log2

P (aln|H1)
P (aln|H0)

< γ|H0

]
= α. As the number of samples grows, P (false− negatives)

reduces exponentially and the performance of the detector is measured in terms of the reliability

rate, which is defined as:

reliability rate = lim
n→∞

− 1

n
log2 P (false− negatives)

For the LRT (or Neyman-Pearson detector), reliability rate can be computed as the Kullback-

Leibler divergence rate [9],

reliablity − rate = lim
n→∞

D(P (ALn)||P̄ (ALn))

n
.

Theorem 3. The reliability rate, measured as the error-exponent of P (false− negatives), achieved

by the Neyman-Pearson detector is computed as:

lim
n→∞

DALn(P ||P̄ )

n
= −

∑
x,y

πx

[
prx→y log

(
p̄rx→y
prx→y

)]

−
∑
x,y

πx

[
∞∑
k=1

p(x− (11)k − y) log

(
p̄(x− (11/11)k − y)

p(x− 11k − y)

)]

where, x, y ∈ {00, 01, 11}.

Proof. For concision, we present an intuitive argument for the proof. The probability of ob-

serving an activity-log (aln) under H0 is computed simply under the Markov model shown in

Figure 2.3. Probability of aln under H1 is the sum of probabilities of all call records (crn) that

map to aln. However, the only sub-sequences of aln that can be generated under different crn
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are of the type x− (11)k − y, for x, y ∈ {00, 01, 10}, as these can be caused by call records sub-

sequences of the type x− (11/11)k− y. p̄(aln) can be easily written in terms of the probabilities

of these sub-sequences. Detailed steps are presented in the Appendix A.1.
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Figure 2.7: Reliability rate versus the probe time gap, r, plotted for different values of λAB

Figure 2.7 plots the reliability rate versus the probe time gap, r, for different values of call-

ing rate between Alice and Bob, λAB. The plot was generated with the following parameter

values:∆ = 0.5 seconds, µAB = µA = µB = 300 seconds and λA = λB = 1 call/hr. Figure 2.7

clearly illustrates that the reliability rate increases with increasing calling rate between Alice and

Bob, λAB. This is the case because higher calling rate implies greater separation between the

Markov model for the two hypotheses. Similarly, the reliability rate increases with increasing

probe time-gap, r, as the attacker observes the system for longer time periods.

In this section, we analyzed the accuracy of the attacker in detecting private communication

between two targets and the effect of different parameters on it. We showed that the attacker’s

accuracy, measured in terms of average probability of error or probability of false-positives can

be very high, demonstrating the threat of PCD. In the next section, we study the efficacy of PCD

in revealing the private call records (length and time of calls) between Alice and Bob.
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2.4 Estimation of Call Records

Once the attacker has been able to positively establish a communication relationship between

Alice and Bob, he may wish to learn the call records of these targets, specially when they talk

to each other. This knowledge allows the attacker to learn the frequency and pattern of the com-

munication between Alice and Bob, providing further pertinent information about their identities

and social relationships. In this section, we quantify the amount of information about call records

leaked due to the activity logs collected by the attacker. On the one hand, this analysis can be

used by the attacker to measure the reliability of the call records information he infers. On the

other hand, this analysis enables a user, who cherishes his/her anonymity, to quantify the pri-

vacy provided by the communication system and compare it with other systems. To this end,

we propose a metric to quantify the anonymity leakage (L) of the system, based on the mutual

information between the call records CRn and the observed activity-logs ALn.

Definition 5. The anonymity leakage of a communication system for the two-target scenario is

defined as:

L = lim
n→∞

I(CRn;ALn)

H(CRn)

where I() represents the mutual information and H() represents the Shannon entropy of the

random variable concerned [11].

The use of mutual information captures the reduction in uncertainty about the call records due

to the knowledge of the activity-logs. At the same time, the mutual information is normalized

with the a-priori entropy of the call records to provide a fair comparison between the different

calling behaviors of the targets. This normalization also implies that L ∈ [0, 1]. Finally, the limit

is taken to observe the system in its steady state.
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2.4.1 Anonymity Leakage with Noiseless Observations

We first compute the anonymity leakage when the attacker’s busy/idle observation process is

noiseless, as is the case with SIP-based VoIP networks. The leakage of the system under noise-

less observation process also forms the worst-case scenario for the user’s privacy and therefore,

can be used to benchmark the weakness of the system. Any reduction in anonymity leakage due

to a specific countermeasure can then be compared with the anonymity leakage under noiseless

observations to measure the efficacy of the countermeasure. The underlying calling behavior for

the two-target scenario is as depicted in Figure 2.4.

Theorem 4. The anonymity leakage of the system under noiseless observations is given by

L = 1−

∑
x,y

π̄xp̄
r
x→y log p̄rx→y

−
∑
i
πi
∑
j
pri→j log pri→j

−

∑
x,y

∞∑
k=1

π̄xp
r(x− (11/11)k − y) log pr(x− (11/11)k − y)

−
∑
i
πi
∑
j
pri→j log pri→j

where, x, y ∈ {00, 01, 11}.

Proof: The denominator limn→∞H(CRn)/n can be simply computed as the entropy-rate

of the first-order Markov chain. To compute the numerator, I(ALn;CRn) can be written as

H(ALn)−H(ALn|CRn). As the mapping from crn → aln is a many-to-one mapping, the con-

ditional entropy H(ALn|CRn) = 0. The entropy H(ALn) = −
∑
p(aln) log2 p(al

n). Detailed

steps for computing p(aln) are shown in the Appendix A.1.

Figure 2.8 illustrates the plot of the leakage vs probe time gap, r and calling rate between

Alice and Bob, λAB. The plot is generated under the following parameter values, ∆ = 1 second,

µAB = µA = µB = 300 seconds, and λA = λB = 2 calls/hr. The following inferences can be

drawn from Figure 2.8

• The leakage of the system is very high, ≈ 1, which means that the attacker can get signifi-

cant information about the call records by analyzing activity-logs.

• The system’s leakage is high when call-arrival rate between Alice and Bob, λAB, is either

lower or much higher than with their third-party friends. For preserving privacy against
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Figure 2.8: Plot of the leakage of the system vs the probe rate of the attacker, r, and calling rate

between Alice and Bob, λAB

PCD attackers, users should homogenize their calling parameters among different parties

so that communication with a particular party cannot be easily identified. This finding is

validated by the real-world approaches employed by criminals in which they make spurious

calls to other parties, in order to hide communication with a crime partner.

• The leakage of the system decreases as the probe time gap increases. However, even for a

very large probe time gap, the system’s anonymity leakage does not fall below 95%. This

implies that PCD cannot be countered by restricting the attacker’s probe rate.

2.4.2 Anonymity Leakage with Noisy Observations

The analysis so far assumed that the attacker’s observation process is noiseless. Now, we study

the impact of observation noise on the system’s anonymity leakage. Such noise may be inherently

present in the busy/idle observation process; e.g., in Wi-Fi networks, or may be intentionally

introduced by countermeasures employed by the target device. We characterize this noise in

the form of a communication channel C between the true busy/idle activity-log (aln) and the

observed busy/idle activity-log (âl
n
), specified by the probability distribution p(âl

n
|aln). If the
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channel C has a capacity cap(C), then due to the definition of capacity [11]

I(ALn; ÂL
n
) ≤ max

p(aln)
I(ALn; ÂL

n
) = n× cap(C).

The system anonymity leakage LC under a noisy observation channel C is defined as,

LC = lim
n→∞

I(CRn; ÂL
n
)

H(CRn)

As CRn → ALn → ÂL
n

form a Markov chain, we have I(CRn;ALn) ≥ I(CRn; ÂL
n
) or

L ≥ LC . This corresponds with intuition that observation noise reduces anonymity leakage and

enhances the user’s anonymity.

Definition 6. The anonymity gain GC due to the presence of a noisy channel C between the real

and observed activity-logs is given by:

GC =
L − LC
L

We immediately have,

Theorem 5. For any channel C with channel capacity cap(C)

GC ≥ 1− cap(C)
L ×HR(CR)

where L is the leakage of the system with noiseless observations and

HR(CR) =
∑
i

πi
∑
j

pri→j log
1

pri→j

is the entropy rate of the call records.

Proof: As CRn → ALn → ÂL
n

form a Markov chain:

lim
n→∞

I(CRn; ÂL
n
)

n
≤ lim

n→∞

I(ALn; ÂL
n
)

n

≤ cap(C)

Theorem 5 relates the anonymity gain of a noisy channel to its channel capacity. Lower

capacity of a channel is a sign of more noise and leads to higher reduction in the leakage of the

system.
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So far, we have demonstrated the fact that PCD poses a major threat to user’s anonymity.

It can be used to detect private communication between users with high accuracy as well as to

reliably learn their call records, even with low probe-rate of the attacker. Additionally, the ca-

pabilities required of an attacker to perform PCD are moderate: the attacker has to be a regular

user of the communication network and has to know the contact information of the targets. This

implies that unlike attacks which require substantial resources only governments or large orga-

nizations can provide, PCD can be launched by rogue individuals, putting anonymity of citizens

at risk. It is vital to develop countermeasures that thwart PCD and protect user’s privacy, as well

as to quantify the efficacy of these countermeasure. In the next section, we analyze the same.

2.5 Countermeasures and their Analysis

There are a number of existing countermeasures to traffic-analysis attacks, such as firewalls,

anonymous and virtual private networking. First, we analyze the efficacy of these countermea-

sures in preventing PCD and show that these countermeasures enjoy little or limited success in

thwarting PCD.

2.5.1 Performance of Existing Traffic-analysis Countermeasures against

PCD

Firewalls: Firewalls are typically used to block unwanted or suspicious packets/traffic patterns.

As PCD works by sending periodic probes to the target device, blocking probe packets or probe

traffic streams with the use of firewalls was proposed as a possible countermeasure against

PCD [35]. However, setting up of firewall rules to block certain packet types is difficult as

probe packets are indistinguishable from normal control packets. Under a different approach,

firewalls can be used to block traffic patterns or rates that resemble the probe traffic. As the

attacker sends periodic probes, the simplest approach is to block any traffic burst above a certain
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threshold, Rt. Rt must be suitably chosen to support legitimate voice packet streams and allow

the normal functioning of the VoIP device. CODECS used for VoIP calling, such as the G.711,

use a standard transmission rate of 50 packets/sec and therefore, it serves as a possible candidate

for Rt. In the case SIP-based VoIP, different VoIP devices use different protocol buffer sizes B:

B = 32 for Linksys PAP2 and 8 for Cisco 7490G [35] and therefore, the highest rate at which

the attacker can probe the device is 50/B times per second. This limit on the maximum probe

rate also enforces a limit on the maximum leakage of the system. Regrettably, even at such low

probe rates the leakage of the system can still be significantly high, as shown in Figure 2.8. This,

in effect, shows that the approach of limiting the attacker’s probe rate does not hamper PCD but

only reduces the accuracy of call records estimation marginally.

Virtual private networks (VPNs): VPNs allow users to securely access private networks from

outside the network. However, they fail to prohibit PCD for two reasons. One, a VPN user is

vulnerable to PCD being performed by another user within the VPN. In fact, the primary feature

of PCD is that private call records information can be acquired by a network peer without the

requiring special network privileges. As specified earlier, the PCD attacker in this analysis is a

user of the network. Second, even if the attacker is outside the VPN, he can perform PCD as

long he can send probes and receive responses from the target device.

Anonymous networking: While low-latency anonymous networks protect information leak-

age through wiretapping and analysis of packet length/timing characteristics, they fail to prevent

PCD as it exploits weaknesses present at the communication end-devices. Furthermore, the low-

latency requirement of VoIP traffic ensures that irrespective of countermeasures deployed inside

the network, the activity behavior of communicating end-devices is synchronous, enabling PCD.

As existing countermeasures to traffic-analysis are not effective against PCD, we develop a

new countermeasure technique resource-randomization and prove its security. This technique

is motivated by the analysis in Section 6.2 which shows that noise in the attacker’s observation

process reduces system anonymity leakage, decreasing the reliability of the information inferred
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by the attacker. Resource-randomization operates by randomizing the resource that is used for

side channel observations, such as SIP buffer-size or packet delay. We develop and analyze

countermeasures based on this technique for SIP-based VoIP networks and Wi-Fi networks.

2.5.2 Resource-randomization in SIP-based VoIP Networks

In the case of SIP-based VoIP networks, the busy/idle status detection is done by forcibly over-

flowing the SIP protocol buffer of the target device. Due to the use of a fixed-size buffer, the

number of probes required to cause the full-buffer-condition (and receive an error message) has

one-to-one correspondence with the activity status of the device which can then be estimated

without error.

However, if the device is designed to randomly change the used buffer size at every time-slot,

then the attacker will not be able to infer the underlying activity with the same accuracy. To

highlight this, we start with a simple example. Let, the used buffer size Bu in a given time-slot

be a random variable that takes the value B with probability 0.5 and B − 1 with probability 0.5.

In this case, the following inferences can be made by the attacker:

• Error after B + 1 probes: The device is idle and Bu = B.

• Error after B − 1 probes: The device is busy and Bu = B − 1.

• Error after B probes: Either the device is idle and Bu = B − 1 , or the device is busy and

Bu = B.

While the attacker can still make the correct inference when the error message is received

after B + 1 or B − 1 probes, it cannot infer the activity status of the target correctly when the

error message is received after B probes. Thus, this strategy creates a noisy channel between

the activity status of the device and the number of probes required for buffer overflow, reducing

leakage. From the analysis in the previous section, we know that the capacity of this noisy

channel puts a limit on the leakage of the system. We compute the capacity of the channel

by considering that the device is busy with probability p and idle with probability 1 − p. The
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probability p can be interpreted as the stationary probability of the target being idle/busy under

the Markov model of Figure 2.4. However, computation of channel capacity is done over all

possible values of p. We have:

I(AL; ÂL) = H(p/2, 1/2, (1− p)/2)− 1

The capacity of the channel is maxp I(AL; ÂL) = 0.5, achieved for p = 0.5. This example

illustrates that even with two possible choices for the used buffer size, the system anonymity

leakage be reduced substantially.

The technique explained above can be extended to achieve further anonymity gains by choos-

ing Bu randomly from a larger set of values {Bmin, Bmin + 1, · · · , Bmax} s.t. Bmax−Bmin = q

with the uniform distribution. The noisy channel between the real activity status of the target

and number of probes required to cause an error message is as shown in Figure 2.9. We again

Device	  ac(vity	  status	   Number	  of	  probes	  	  
that	  cause	  an	  error	  

BUSY	  
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Bmax	  +1	  

Bmax	  

•  	  	  
•  	  	  
•  	  	  
•  	  	  
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Figure 2.9: A visualization of the buffer randomization channel in SIP-based VoIP devices

calculate the capacity of the channel in order to limit the system’s leakage:

Theorem 6. The capacity of the buffer randomization channel visualized in Figure 2.9 is given

by:

cap(buffer− randomization) =
1

Bmax −Bmin + 1
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Proof: Simple calculation of the capacity of a discrete memoryless channel.

Theorem 6 proves that system designers can form a channel with an arbitrarily low capacity

by simply increasing the size of the set from which the used buffer size can be chosen. From

Theorem 5, as the capacity of the channel goes to 0, the anonymity gain G goes to 1, i.e. the

system provides perfect anonymity against PCD attacks.

2.5.3 Resource-randomization in Wi-Fi Networks

In Wi-fi networks, the busy/idle status detection can done by sending periodic probe requests to

the target and measuring delay in the probe responses. If a target is busy on a VoIP call, the

probe requests will be served after the VoIP packets and therefore, the reply will take more time

compared to a device that is idle. In a practical setting, this difference in timing is variable due to

the presence of network jitter and other delays in the network. We create an ideal attack scenario

for the attacker by assuming that such variations are absent, and show that even in this case,

randomization can be used to reduce the leakage of the system. Let T1 be the time taken by the

reply when the device is idle and T2 > T1 be the time taken by the reply when the device is busy.

The attacker can identify the activity status of the device by simply checking the time taken by

the reply, making the busy/idle status detection process noiseless.

To prohibit this, a random delay is added to the reply to introduce noise in the attacker’s ob-

servation process. Let the random delay D be chosen uniformly from the range (0, Dmax). Then,

the time taken by the reply T is T1+D or T2+D depending on the state of the device. Figure 2.10

visualizes the noisy channel in the busy/idle detection process. Let p be the probability of the

device being busy and 1− p be the probability of the device being idle. The mutual information

between the input and the output of the channel, i.e. the status of the device and the time taken by

the reply respectively, equals H(p)
(
T2−T1
Dmax

)
. The maximum value of the mutual information or

the channel capacity is achieved for p = 1/2. This result shows that the capacity of the channel

can be made arbitrarily small by increasing the maximum delay Dmax and therefore PCD can be
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completely thwarted by adding large random delay.
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Figure 2.10: A visualization of the noise in the busy/idle status detection in Wi-Fi networks

introduced by the countermeasure

However, in this case, resource randomization suffers from practical considerations. Addition

of large delay might make packets useless for certain purposes. For example, the network delay

of VoIP packets must be less than 400 ms as per the ITU-T recommendations. Addition of ran-

dom delay by the countermeasure would lead to the total delay of packet crossing the 400 ms limit

and being dropped. The choice of the maximum delayDmax must be made in such a way that the

fraction of the packets dropped is within the acceptable threshold as per the system specification.

For specified values of T1, T2 < 400 ms and Dmax, the fraction of packets dropped due to the ad-

dition of the random delay by the countermeasure is given by 1
2

(
Dmax+T1−400

Dmax
+ Dmax+T2−400

400

)
.

If θ > 0 is the maximum fraction of packet drops for acceptable service, then the maximum

permissible value of Dmax is given by:

Dmax =
400− T1+T2

2

1− θ

This in turn, provides a lower bound on the capacity of the noisy channel or a cap on the efficacy

of the countermeasure.

The analysis done in this section shows that resource-randomization can successfully thwart

PCD. At the same time, its practical implementation in real-world communication devices is
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easy. Together, these features of resource-randomization have positive implications on the pri-

vacy of users against PCD. The success of this technique also implies that while designing prac-

tical communication devices, the amount of resources allocation to a particular task should not

be deterministic to ensure that usage of these resources cannot be attributed to a specific behavior

of the device, preventing side-channel attacks.

2.6 Conclusions

Private communication detection can be a powerful tool for governments, corporations, and

rogue individuals that wish to extract information such as communication relationships of their

targets and might be desirable for its low cost. As information extracted by this attack might be

used in the future as actionable evidence for further privacy breach, it is important to understand

the strengths and limitations of this attack, and provide performance guarantees. In this work, we

have developed a quantitative framework to understand the impact of the probing strategy of the

attacker and the calling behavior of the users on the efficacy of PCD in determining communica-

tion relationships and call records. We have developed mathematical guarantees on the efficacy

of communication relationship classification and the leakage of the communication record infor-

mation. At the same time, we have analyzed the efficacy of different countermeasures, such as

resource randomization and firewalls, in thwarting PCD attacks under the same leakage model.

Our results show that resource randomization outperforms firewall protection as it introduces

noise in the side channel used to observe communication activity. This analysis provides a set of

tools that can help system designers in building provably secure systems.
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Chapter 3

Side Channels in Shared Network

Components

In the presence of end-to-end encryption of packet contents and headers; e.g., in TLS and IPSec,

the focus of security attacks is shifting towards traffic-analysis. Packet schedulers form an inte-

gral part of the Internet infrastructure and are used for tasks ranging from packet forwarding to

traffic management. Due to the amount of traffic handled by them, packet schedulers have be-

come valued targets for traffic-analysts. Even if the correlation of incoming and outgoing traffic

at routers and forwarding node is removed with the use of anonymizing techniques, side-channel

attacks can been used to de-anonymize traffic. Packet schedulers have finite resources so they

queue packets belonging to different traffic streams and forward them using policies such as

first-com-first-serve (FCFS). This limitation leads to dependence between the packet delay of

one stream and the traffic generated by another stream. An attacker can use the delay informa-

tion of his packets and estimate the traffic pattern of a private stream. Learned traffic patterns

can be used to cause significant privacy and anonymity breaches. For example, Gong et al. used

estimated traffic patterns of a user’s traffic stream at a DSL router and compared them with traffic

patterns of known websites to reveal the identity of the website [28]. Similarly, Murdoch and

Danezis demonstrated an attack where the attacker can reveal the secret path used by an anony-
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mous stream in Tor. This is achieved by transmitting a specific traffic pattern on the user’s chosen

OR path and using side channels to identify if sent traffic pattern is forwarded by a target OR. In

both attacks, the attacker periodically probes the target device and correlates the delay of probe

responses with known traffic patterns. Figure 3.1 illustrates the general attack setup.

USER	  

ATTACKER	  

Shared	  DSL	  router	  

website	  

Figure 3.1: Privacy breach through side channel attack on a shared packet scheduler

A novel information-theoretic analysis of this side channel was performed by Gong et al. [27]

for a two-user shared FCFS packet scheduler. In their analysis, the user’s traffic stream and at-

tacker’s probe stream were modeled as Bernoulli-distributed random processes and the scheduler

was assumed to serve one packet per time-slot. They measured the vulnerability of the scheduler

in terms of the leakage of user’s packet arrival pattern due to attacker’s knowledge of his probes’

delay. Their results showed that the leakage of the scheduler approaches maximum; i.e. 1, when

the attacker probes at the fastest possible rate. While these attack examples and analysis high-

lighted the threat posed by this side channel, they were limited in the sense of considering the

worst-case impact. The two attack demonstrations are performed in laboratory settings which
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were favorable to the demonstrations. For example, Murdoch and Danezis used a small Tor net-

work that comprised of 13 Onion Routers and Gong et al. assumed that the user only visits one

website at a given time without any background traffic. These assumptions don’t hold in prac-

tice; e.g., a real-world Tor network comprises of around 1300 ORs. To successfully launch these

attacks in a real setting requires significant bandwidth resources from the attacker.

This limitation exists, mainly due to the inefficient use of bandwidth by the attacker in both

cases. Periodic probing is a simplistic strategy but it requires the same probe rate even if the

scheduler is already fully-clogged. Intuitively, a more intelligent and adaptive attacker will stop

sending probe traffic in that circumstance and save up on bandwidth. Excessive and periodic

probing as used in the literature is also more likely to be identified and blocked, defeating the

purpose of the attack. A natural question that arises from this discussion is whether the attacker

can find better, yet optimal, probing strategies for a given bandwidth budget and how much

benefit can be extracted by such strategies. Clearly, this question is pertinent to other, possibly

all, side-channel attack setups. In this chapter, we use the example of packet schedulers and build

on the model developed by Gong et al. to answer both questions positively. Specifically,

• We show that a non-adaptive attacker; i.e. one that does not rely on previously collected

information to decide future inputs, can achieve upto 1000% enhancement in information

leakage for the same bandwidth budget as Geometric probing strategy used by Gong et al.

• We discuss the limitations of leakage metrics used in the literature and give rationale be-

hind the use of causally-conditioned entropy in the leakage metric defined in Section 1.

• Under our metric, we show that an adaptive attacker; i.e. one that uses past observations to

decide future inputs, can achieve a further 30% gain over optimal non-adaptive strategies.

• Finally, we find optimal real-world strategies that incorporate delay in feedback present in

a real-world setup and compute their leakage.

In each case, we show that optimal strategies can be identified by solving linear programs that

bring them under the reach of a computationally-constrained attacker. Such enhancements on
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leakage show that side-channel attacks on packet schedulers have the potential of breaking

anonymity in real-world and large-scale networks. They also highlight the limitation of coun-

termeasures, such as privacy-preserving scheduling [36], which only consider specific and non-

optimal attack strategies. We now describe the theoretical model developed by Gong et al. [27]

with modifications to generalize attack strategies.

3.1 System Description

The basic setup consists of a user and an attacker that share a FCFS packet scheduler. Time is

discretized into fix-sized time-slots and packet arrivals occur only at the beginning of a time-

slot. In case of a collision between the user’s packet and attacker’s packet arriving on the same

time-slot, priority is given to the attacker’s packet. The scheduler serves one packet per time-slot

following FCFS scheduling and service for each packet take exactly one time-slot.

Let,

• ti represent the time of arrival of the ith probe to the queue,

• t′i represent the time of departure of the ith probe from the system,

• ai = ti − ti−1 represents the inter-arrival time for the ith probe,

• di = t′i − ti represents the delay of the ith probe including the fixed service time of one

time-slot,

• xi represent the number of user’s packets arriving to the system in the time interval [ti−1, ti),

• tn, t′n, an, dn, xn represent the collection of respective items for n probes. item Capital

letters represent random variables and small letter their realization.

3.1.1 User’s Packet Arrival Process

Packets arrive from the user following a Bernoulli arrival process with rate λ1. That is, in each

time-slot a maximum of one packet arrives from the user to the scheduler with probability λ1
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and no packet arrives with probability 1− λ1. Packet arrivals in different time-slots are indepen-

dent and identical random processes. Thus, given a specific time interval [t1, t2), the number of

packets arriving from the user x ∈ {0, 1, · · · , t2 − t1} with

p(x|t2 − t1) =

(
t2 − t1
x

)
λx1(1− λ1)t2−t1−x

3.1.2 Attacker’s Probing Strategy

The attacker’s probing strategy is characterized by his choice of the probability distribution on

the inter-arrival times of his probes (ai) for ai ∈ [1, 2, · · · ,∞). The attacker may choose the

inter-arrival time of the nth probe, an, by considering all the previous observed inter-arrival

times, an−1 and queuing delays, dn−1 ; i.e. through a probability distribution p(an|an−1, dn−1).

This represents the most general form of feedback in the side channel. The attacking strategy

is, however, limited by the average probe arrival rate (λ2). The average probe arrival rate is

computed as the inverse of the average probe inter-arrival time

λ2 =
1∑

a ap(a)

In case of non-adaptive attacks, the attacker may choose any time-invariant strategy p(An =

a) = p(a). The inter-arrival times for different packets are identical and independent random

processes. Gong et al. analyzed the system leakage for an non-adaptive Bernoulli attack process;

i.e.

p(An = a) = (1− λ2)a−1λ2

3.1.3 System Leakage

The leakage L of the system is defined as [27]:

L = lim
n→∞

1− H(Xn|T n, T ′n)

H(Xn|T n)

where H() represents the Shannon entropy of the input random variable [11].
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3.1.4 Side-channel Model

The value of xi depends only on the inter-arrival time for the ith packet, the service delay of the

i−1th and the ith packet; i.e. ai = ti− ti−1, di−1 = t′i−1− ti−1, and di = t′i− ti respectively [27].

Due to this relationship, we can model the side channel as a two-user system shown in Figure 3.2.

The input of the attacker to the side channel is ai which is the inter-arrival time for the ith probe

ai = f(ai−1, di−1)

ATTACKER

SIDE CHANNELUSER
x1, x2, · · ·

d1, d2, · · ·
di = [xi + di−1 − ai]+ + 1

a1, a2, · · ·

Figure 3.2: A model for the side channel at a FCFS packet scheduler

chosen according to a chosen distribution p(a). The input of the user to the side channel is

xi ∈ {0, · · · , ai} which is the number of user’s packet that arrive to the scheduler in the period

ti generated following the Bernoulli process. The output of the side channel is di which is the

delay for the ith packet. This output is made available to the attacker who may or may not use it

to generate the next input ai+1. The delay-traffic side channel is then defined as the fundamental

relationship between the inputs to the channel and the output:

di = [xi + di−1 − ai]+ + 1 (3.1)

In the next section, we formulate the information leakage for all non-adaptive attacking strate-

gies and identify the strategies that cause the maximum possible leakage.
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3.2 Optimal Non-adaptive Strategies for Information Leak-

age

3.2.1 Leakage of General Non-adaptive Strategies

To identify the optimal non-adaptive strategy for a given probe rate, we first analyze the leakage

of a general attack strategy. A non-adaptive attacker chooses a time-invariant attack strategy that

picks the inter-arrival time for each probe independently of previous probes and side-channel

observations. That is, the inter-arrival time of the nth probe, p(an = a) = p(a) for any n. The

chosen distribution is subject to an average probe rate constraint of λ2; i.e.

∑
a

ap(a) =
1

λ2

For such strategies, leakage can be computed as,

lim
n→∞

1− H(Xn|An, Dn)

H(Xn|An)
= 1− lim

n→∞

H(Xn|An, Dn)

H(Xn|An)

= 1−
limn→∞

H(Xn|An,Dn)
n

limn→∞
H(Xn|An)

n

This implicitly assumes that the denominator is non-zero. The limits in the numerator and de-

nominator can be further computed using Césaro’s Mean Theorem [48], which states that if a

sequence {zi} converges to z, then the running-average

n∑
i=1

zi

n
also converges to z. We first com-

pute the denominator, H(Xn|An), as

H(Xn|An) =
n∑
i=1

H(Xi|Ai)

= n

∞∑
a=1

p(a)HB(λ1, a)

lim
n→∞

H(Xn|An)

n
=

∞∑
a=1

p(a)HB(λ1, a)

where, HB(λ1, a) represents the entropy of the binomial distribution with success probability

λ1 and number of trials a. This is because the given the knowledge of the time-period, the
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number of user’s packet arrival follow the binomial distribution. HB(λ1, a) is easily computed

as 1
2

log2(2πeaλ1(1− λ1)) +O( 1
a
).

Similarly, for the numerator

H(Xn|An, Dn) = H(Xn|An, Dn)

=
n∑
i=1

H(Xi|X i−1, An, Dn)

=
n∑
i=1

H(Xi|Ai, Di, Di−1)

This is because of the mathematical relationship between xi, ai, di, and di−1 which derives

from the basic distributions of the side channel (Equation 3.1). Moreover, if di > 1, xi can

be determined in terms of other parameters with certainty. That is, H(Xi|ai, di > 1, di−1) = 0.

This implies that the entropy of the attacker in estimatingXi is non-zero only if a probe arrives to

experience an empty queue. If di = 1, then from Equation 3.1 we can see that xi ∈ {0, · · · , ai−

di−1}. H(Xi|ai, di, di−1) can be computed as

H(Xi|Ai, Di, Di−1) =
∑
ai,di−1

P (ai)P (di−1)P (di = 1|ai, di−1)H(Xi|ai, di = 1, di−1)

=
∑
ai,di−1

P (ai)P (di−1)PEQ(ai, di−1)H(Xai,di−1
)

where,

• PEQ(ai, di−1) represents the probability of observing an empty queue given delay of the

previous probe and the inter-arrival time of the current probe. PEQ(ai, di−1) = P (Xi ≤

ai − di−1)

• Xai,di−1
is a random variable that represents the number of user’s packets that arrive be-

tween two consecutive probes such that an empty queue can be caused. Then,

P (Xai,di−1
= x) =

(
ai
x

)
λx1(1− λ1)ai−x∑ai−di−1

x=0

(
ai
x

)
λx1(1− λ1)ai−x

for x ∈ {0, 1, · · · , ai − di−1}.
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Again, Césaro’s mean theorem can be applied to compute

lim
n→∞

H(Xn|An, Dn)

n
= lim

n→∞
H(Xn|An, Dn, Dn−1)

provided the limit of each term in the expansion of H(Xn|An, Dn, Dn−1) exists. Since the probe

distribution, p(a), is time-invariant and both PEQ(an, dn−1), H(Xan,dn−1) depend entirely on the

values of an and dn−1, and are independent of the other parameters. Now, we show that the queue

length behaves as a first-order, irreducible Markov chain and therefore, the limiting distribution

limn→∞ P (dn−1) exists and equals the stationary distribution of the Markov chain. Let, πq denote

the stationary probability of the queue length being q.

Theorem 7. The stationary probability “πq” of a probe experiencing a delay of q ∈ {1, · · ·∞}

upon its arrival is given as πq = αq−1(1− α), where α is the solution of the equation

α =
∞∑
a=1

p(a)(λ1 + α(1− λ1))a

For binomial probing with rate parameter λ2 used in [27],

α =
λ1λ2

(1− λ1)(1− λ2)
.

Proof. Let the queuing delay experienced by the nth probe Dn = a. Then, the queuing delay

experienced by the n+ 1th probe, Dn+1 ∈ {1, · · · , a+ 1}. This is because either the inter-arrival

time for the n+1th probe, an+1 is large and the number of packets of the user xn+1 small enough

for the queue to drain, or a packet arrives from the user in each time-slot: i.e. xn+1 = an+1 so

that the queue length increases by one. Importantly, the queue length cannot increase more than

one between two consecutive probes, and the queue length cannot reduce by more than an+1

between consecutive probes. Define

γi :=
∞∑
a=i

p(a)

(
a

i

)
(1− λ1)iλa−i1

and transition probability P (Dn+1 = b|Dn = a) := pba Then,

pba =

 γa−b+1 for b > 1∑∞
i=a+1 γi for b = 1
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As the state transition probability is independent of n and depends only on the previous state,

this stochastic process is essentially a first-order stationary Markov process. Also, the transition

probabilities imply that the the Markov chain is a-periodic and irreducible. Therefore, a unique

stationary distribution for the Markov chain exists [30]. Let, π1, π2, · · · represent the stationary

distribution of the process. Then, the global balance equations for the Markov chain are give as



p1
1 p1

2 p1
3 · · ·

p2
1 p2

2 p2
3 · · ·

0 p3
2 p3

3 · · ·

0 0 p4
3 · · ·





π1

π2

π3

...


=



π1

π2

π3

...



Replacing pba with γa−b+1 for b > 1, we get



γ0 γ1 γ2 γ3 · · ·

0 γ0 γ1 γ2 · · ·

0 0 γ0 γ1 · · ·

0 0 0 γ0 · · ·





π1

π2

π3

π4

...


=



π2

π3

π4

π5

...



For πi = π1α
i−1, all the above balance equations convert to a single balance equation

γ0 + αγ1 + α2γ2 + · · · = α

Additionally, due to the condition
∑

i πi = 1, we have π1 = 1− α and πi = αi−1(1− α), where
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α ∈ [0, 1] to maintain πi ∈ [0, 1]. Rewriting the above equation, we get

α =
∞∑
i=0

γiα
i

=
∞∑
i=0

(
∞∑
t=i

p(a)

(
a

i

)
(1− λ1)iλa−i1

)
αi

=
∞∑
i=0

(
∞∑
t=i

p(a)

(
a

i

)
(α(1− λ1))iλa−i1

)

=
∞∑
a=1

p(a)

(
a∑
i=0

(
a

i

)
(α(1− λ1))iλa−i1

)

=
∞∑
a=1

p(a)(λ1 + α(1− λ1))a

Equivalently, α = β−λ1
1−λ1 , where β is the solution of the equation

β − λ1

1− λ1

= Gp(β)

Here, Gp() represents the standard probability generating function of the inter-arrival distribu-

tion.

With this, we can simplify leakage for a general non-adaptive strategy, p(a), as

lim
n→∞

1− H(Xn|An, Dn)

H(Xn|An)
= 1−

∑
a,d

p(a)π(d)PEQ(a, d)H(Xa,d)∑
a

p(a)HB(λ1, a)

3.2.2 Optimal Non-adaptive Strategies

To find the optimal non-adaptive strategy, specified as the inter-arrival distribution p(a), we

first fix an α which converts the balance equations for the stationary distribution into a linear

constraint in terms of the control variables p(a). Similarly, the average probe rate constraint∑
ap(a) = 1/λ2 is another linear constraint in p(a). For a given α, the optimal strategy is found

as:
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Figure 3.3: Leakage with optimized non-adaptive attacks vs binomial probing

Maximize∑
a,d

p(a) {π(d) (HB(λ1, a)− PEQ(a, d)H(Xa,d))}∑
a

p(a)HB(λ1, a)

Subject to

1: 0 ≤ p(a) ≤ 1, for all a

2:
∞∑
a=1

p(a = 1) = 1

3:
∞∑
a=1

ap(a) = 1/λ2

4:
∞∑
a=1

p(a)(λ1 + (1− λ1)α∗)a = α∗

where α∗ is the maximum α ∈ (0, 1) such that the above linear program has a solution. The

reason to choose the largest α is because it ensures higher probability of a clogged queue and

therefore, increases leakage.
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Note that the objective function here is a linear-fractional function: i.e. the numerator and

denominator are linear function of the control variables. Linear fractional functions are quasi-

linear and therefore, have a unique maximum (or minimum value) which can be discovered by

solving an equivalent linear program [5]. Simply, to maximize
∑

i gixi∑
i hixi

subject to linear constraints∑
i kixi = 0, one needs to find the largest t such that the linear system

∑
i(gi − thi)xi = 0 and∑

i kixi = 0 has a solution. This solution is the optimal strategy and corresponding leakage is

the maximum leakage. As an example, for λ1 = 0.1, λ2 = 0.1, and 1 ≤ a ≤ 50, the distribution

that achieves the maximum leakage is p(1) = 0.8075, p(2) = 0.0090, and p(50) = 0.1835 and

the corresponding leakage is 0.4. For the same λ1, λ2, geometric probing achieves a leakage of

0.0361. Figure 3.3 illustrates the leakage of the optimal strategies (solid lines) and geometric

probing (dotted lines) versus the specified average probe arrival rate of the attacker (λ2). The

comparison is done for five different average packet rate of the user λ1 = {0.1, 0.2, 0.3, 0.4, 0.5}.

Clearly, the leakage under optimal non-adaptive attack strategies is significantly higher than for

geometric probing for the same average probe rate.

Next, we show that an adaptive attacker; i.e. one that uses previous observations to determine

future inputs, can potentially achieve even more leakage than optimal non-adaptive attacker.

However, we first highlight some limitations of the leakage metric used by Gong et al. [27] in

analyzing adaptive strategies. These limitations stem from the processing of causal information

which, while not being important for non-adaptive strategies, leads to erroneous measurement

of leakage for adaptive strategies. To recommend necessary changes in the leakage metric to

overcome these issues.
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3.3 Causal Leakage: a New Leakage Metric for Adaptive At-

tack Strategies

To drive the discussion on leakage metrics, we first discuss the intuition behind them. The leak-

age metric intends to capture the reduction in entropy of the user’s input given the attacker’s

knowledge of side-channel outputs. Basically, the metric quantifies amount of additional infor-

mation about user’s inputs that is provided due to the attacker knowing side-channel outputs.

Baseline comparison is performed with the a-priori information that the attacker has about the

user’s input when he only knows his own inputs. This is represented in the denominator of the

leakage expression, H(Xn|An). It is important to point out that the side channel is causal; i.e. an

output depends only on past inputs and independent of future inputs to the side channel. Using

the chain rule of entropy [11], we get

H(Xn|An) =
∑
i

H(Xi|X i−1, An)

For non-adaptive strategies, the denominator indeed captures the baseline (a-priori) infor-

mation possessed by the attacker. As future inputs are independent of past inputs/outputs, Xi

depends only on the past information; i.e. Âi which leads to the reduction H(Xn|An) =∑
iH(Xi|Ai). Such independence does not exist for adaptive strategies because the knowl-

edge of future side-channel inputs inadvertently implies knowledge of past outputs as the attack

strategies depends on it. Therefore, the baseline information of the attacker is miscalculated and

must be rectified. These statistical relationships are more easily understood using the concept

of functional-dependence graphs (fd-graphs). We first review this concept briefly, in particular

the implication of connectivity between nodes of a fd-graph on independence of corresponding

random variables [41].
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3.3.1 A Review of Functional-Dependence Graphs

A functional-dependence graph, or fd-graph, is a representation of a stochastic system in the

form of a directed graph where random variables are represented as nodes of the graph and a

directed edge between two nodes represents the existence of a direct causal statistical relationship

between the corresponding random variables. If two random variables are independent then no

directed edge connects them. Nodes with no incoming edges are known as source nodes. In a

fd-graph G with disjoint subsets of nodes A, B, and C, the subset B is said to d-separate subsets

A and C if no path exists from the nodes in A to nodes in C after the following manipulations

have been performed

1: Create a sub-graph G ′ of G by considering only the links encountered while traveling back-

wards for any node in A, B, or C

2: Remove all the edges in G ′ outgoing from the nodes in B

3: Remove the directions from all remaining edges in G ′

fd-graphs simplify the analysis of statistical relationships between random variables, mainly

due to the result that if B d-separates A and C, then A and C are independent conditioned on

B; i.e. I(A;C|B) = 0 [41]. The fd-graphs for non-adaptive and adaptive attack strategies

are presented in Figure 3.4a and 3.5a, respectively, which will be used to analyze the statistical

relationship between different random variables in the leakage expression.

3.3.2 Statistical Relationships in Non-adaptive Strategies

Figure 3.4b shows the fd-graph between Xi and A’s conditioned upon Ai. It can be clearly seen

that no edge exists between Xi and any Aj for j 6= i. This implies that conditioned on Ai, Xi is

independent of all future and past Aj . Similar argument can be made for statistical relationship

between Xi and Xj . Therefore,

H(Xi|X i−1, An) = H(Xi|Ai)
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Figure 3.4: Strategies without feedback
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Figure 3.5: Strategies with first-order feedback
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Similarly, from Figure 3.4c shows that Xi is independent of all other variables when condi-

tioned on Ai, Di, and Di−1. This implies,

H(Xi|X i−1, An, Dn) = H(Xi|Ai, Di, Di−1)

Next, we use the same tools to show that these relationships do not exist for adaptive attack

strategies.

3.3.3 Statistical Relationships in Adaptive Attack Strategies

In the case of adaptive attack strategies, we first analyze the numerator; H(Xi|X i−1, An, Dn).

As can been seen in Figure 3.5c, conditioned on Ai, Di and Di−1, Xi is independent of all other

variables. This implies

H(Xi|X i−1, An, Dn) = H(Xi|Ai, Di, Di−1)

In contrast , Figure 3.5b that when conditioned onAi,Xi andAj for j > i remains connected.

This implies that these random variables are not independent and therefore,

H(Xi|X i−1, An) 6= H(Xi|Ai)

This can be explained by the fact that in the case of adaptive strategies, knowledge of future

inputs already includes knowledge of future outputs, and therefore entropy cannot be used to

compute the baseline uncertainty of the attacker. This theme is recurrent in information-theoretic

discussion on channels with feedback and specific concepts, such as causally-conditioned en-

tropy and directed information, to deal with these scenarios. The definition we provided for the

leakage of a general side channel in Chapter 1 incorporates these concepts already. Next, we use

formalize the new definition of leakage that is appropriate for adaptive strategies and reduces to

Gong et al.’s definition for non-adaptive strategies.

74



3.3.4 Causal Leakage

We introduce the notion of causal leakage for strategies with feedback that resolves this issue. To

avoid an indirect use of side channel outputs in measuring the a-priori uncertainty of the attacker

we employ the notions of causally-conditioned entropy [41]. We define the causal leakage Lc

for feedback strategies:

Lc = lim
n→∞

1− H(Xn||An, Dn)

H(Xn||An)
,

whereH(An||Bn) =
∑

iH(Ai|Ai−1, Bi−1) is the entropy of the random sequenceAn causally-

conditioned on the random sequence Bn [41]. Using this definition, we can easily find that

H(Xn||An) =
∑
i

H(Xi|Ai)

and

H(Xn||An, Dn) =
∑
i

H(Xi|Ai, Di, Di−1)

The use of causally-conditioned entropy ensures the causal availability of information in the

measurement of uncertainty and therefore, the metric is has better suitability. Now, we use this

metric to find optimal adaptive attack strategies. 1

1The use of the original definition L may overestimate the true information leakage of the system for adaptive

strategies. This is because

H(Xn|Tn) ≤ H(Xn||Tn)

and therefore,

L ≥ Lc

Intuitively, use of H(Xn|Tn) inadvertently considers information imparted by future side channel inputs which

within them contain information imparted by side channel outputs, thus understating the a-priori uncertainty of Xn.
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3.4 Optimal Adaptive Strategies for Information Leakage

To identify optimal adaptive attack strategies, we first compute the leakage of a general adaptive

attack strategy. The reason to analyze these strategies stems from the fact that in a side-channel

attack, the attacker issues one of the inputs and observes the output. It is natural to consider the

case when the attacker uses previous observations to decide future inputs; i.e. be adaptive. Not

surprisingly, a number of real-world side-channel attacks are adaptive [6].

3.4.1 Leakage of a General Adaptive Strategy

A general adaptive attack strategy can be described a sequence of probability distributions,

{p(ai|ai−1, di−1)}∞i=1, where the ith distribution is used to choose the packet inter-arrival pat-

tern of the ith packet. This strategy is subject to an average probe rate constraint

∑
i

∑
ai

aip(ai|ai−1, di−1) =
1

λ2

Strategies that use complete history in the determination of next input are impractical as

their memory and computational requirements grow exponentially with the number of packets.

Additionally, theoretical analysis of such strategies is not possible in a general case. We remove

this hurdle first by showing that to find optimal adaptive strategies, the attacker does not need to

use entire history. In fact, he only needs to store and use the latest side-channel output.

Theorem 8. For any adaptive strategy that uses entire history, described as p(ai+1|ai, di), there

exists an adaptive strategy that only uses the queuing delay of the previous probe; i.e. p(ai+1|di)

and achieves the same information leakage.

Proof. The behavior of the queue can be modeled as a Markov Decision Process (MDP) where

states are tuples (ai, di−1) where the reward, measured in terms of mutual information between

inputs and outputs, depends only on ai and di−1. The transition between states depends only one

the previous state and the action which the choice of the next input. For MDPs, a standard result
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known as the dominance of Markov policies [1] states that maximum reward is achieved by a

Markovian strategy which chooses current action based solely on current state.

Therefore, we will now restrict our analysis to strategies that can be specified as p(ai|di−1).

Furthermore, we limit the discussion to time-invariant strategies; i.e p(ai = a|di−1 = d) =

p(a|d). We can compute leakage by separately computing numerator and denominator. From the

definition of causally-conditioned entropy

H(Xn||An) =
∑
i

H(Xi|X i−1, Ai−1)

=
∑
i

H(Xi|Ai)

=
∑
i

∑
ai

p(ai)H(Xi|ai)

=
∑
i

∑
ai

p(ai)HB(λ1, ai)

=
∑
i

∑
ai

p(di−1)p(ai|di−1)HB(λ1, ai)

The limit lim
n→∞

H(Xn||An)
n

can be computed using Césaro’s mean theorem if individual limiting

probabilities exist. Since the choice of attack strategy is time-invariant, we only need to prove

the existence of lim
n→∞

p(dn−1). Similarly for the numerator,

H(Xn||An, Dn) =
∑
i

H(Xi|X i−1, Ai, Di)

=
∑
i

H(Xi|Ai, DiDi−1)

=
∑
i

∑
ai,di−1

p(di−1)p(ai|di−1)PEQ(ai, di−1)H(Xai,di−1
)

Again, to compute lim
n→∞

H(Xn||An,Dn)
n

using Césaro’s mean theorem, we only need to show the

existence of lim
n→∞

p(dn−1). In essence, the above computations are similar to the analysis of non-

adaptive strategies except that the probability distribution of probe inter-arrival times depends on

the queuing delay of the probe. To show that lim
n→∞

p(dn−1) exists, we only have to show that even

in this case, queuing delay faced by a probe behaves as a first-order, irreducible Markov chain.

If so, lim
n→∞

p(dn−1) is simply the stationary distribution of the Markov chain.
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Let Dn represent the state of system in the nth time-slot. Then the transition probability,

p(Dn+1 = g|Dn = h), denoted as pgh, can be derived as

pgh =


0 g > h+ 1
∞∑

A=h−g+1

p(A|h)
(

t
h−g+1

)
(1− λ1)h−g+1λ

A−(h−g+1)
1 for g ∈ {2, · · · , h+ 1}

∞∑
i=h+1

∑∞
A=i p(A|h)

(
t
i

)
(1− λ1)iλA−i1 for b = 1

From the transition probabilities, it can be seen that the Markov chain is first-order, and ir-

reducible because each state can be reached for every other state. Therefore, the stationary

distribution of the Markov chain exists. Let π(D) be the stationary probability of the queuing

delay being D. Then, the leakage of a general adaptive strategy specified by the distribution

p(Ai+1 = a|Di = d) can be computed as

Lc = 1−

∑
a,d

π(d)p(a|d)PEQ(a, d)H(Xa,d)∑
a,d

π(d)p(a|d)HB(λ1, a)

3.4.2 Optimal Adaptive Strategies

The optimal strategy is found by solving the following linear program:
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Maximize

∑
a,d

p(a, d) {HB(λ1, a)− PEQ(a, d)H(Xa,d)}∑
a,d

p(a, d)HB(λ1, a)

Subject to

1: 0 ≤ p(a, d) ≤ 1, for all a, d

2:
∑
a

p(a, d) = π(d) for all d

3: π(d = h) =
∑∞

g=h−1 π(d = g)phg , for all h ∈ {0, 1, · · · }

4:
∑
a,d

ap(a, d) = 1/λ2

5:
∑
d

π(d) = 1

6: 0 ≤ π(d) ≤ 1, for all d

Due to the lack of a general form for the stationary distribution, the search for the optimal

strategy that maximizes leakage using the above-mentioned linear program must treat the station-

ary distribution π(d) and the joint distribution p(a, d) as the control variables. The actual attack

strategy can be determined as p(a|d) = p(a,d)
π(d)

. Again, the objective function is a linear-fractional

in terms of the control variables and the constraints are linear. Therefore, the linear program has

a unique maximum value. Figure 3.6 illustrates the percentage enhancement achieved by optimal

adaptive strategies over optimal non-adaptive strategies for the same bandwidth budget. Clearly,

adaptive strategies achieve significant higher leakage and therefore, need to be part of a thorough

side-channel analysis.

Similar to non-adaptive scenario, the stationary distribution that provides maximum leakage

is the one that is biased towards a full queue. Intuitively, the adaptive attack strategy will ensure

low probe inter-arrivals times when the queue is empty and large probe inter-arrival times when

the queue is clogged. This ensures that queue remains full and therefore, the leakage is higher

compared to non-adaptive strategies that have the same distribution on probe inter-arrival times

irrespective of the queue lengths. For λ1 = 0.1 and λ2 = 0.1, the maximum leakage achieved the
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optimal adaptive strategy is 0.43 as opposed to the maximum of 0.40 for non-adaptive strategies.

The increment in leakage is smaller for lower λ1 because the restriction on the average probe

rate does not allow very short probe intervals even when the queue is empty. Figure 3.6 shows

the performance enhancement in system leakage when full feedback is used by the attacker. It is

clearly seen that a performance enhancement of nearly 28 % can be achieved for λ1 = 0.5 and

λ2 = 0.1. Table 3.1 shows the optimal attack strategy for λ1 = 0.1 and λ2 = 0.1.

This example clearly validates the argument presented earlier. When the queue is empty, the

inter-arrival time for the next packet is reduced to clog the queue. If the queue is clogged, the

inter-arrival times may be increased without emptying the queue completely and ensuring low

average probe rate.

3.5 Optimal Real-world Adaptive Attack Strategies

Adaptive strategies presented in the previous section allow the attacker to use all the previous

information. That is, to decide the inter-arrival time for the nth, the attacker can use inter-

arrival times and queuing delays for all previous packets (from 1 to n − 1). As the system is

assumed to be causal, this is the maximum information that can be available to the attacker and
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Figure 3.6: Percentage enhancement in system leakage due to feedback
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Dn−1|An 1 2 3 4 5 · · ·

1 0.0281 0.0394 0.0360 0.0350 0.0342 · · ·

2 0.9982 0 0 0 0 · · ·

3 0.7639 0.2339 0 0 0 · · ·

4 0.8243 0.1716 0.0010 0 0 · · ·

5 0.8341 0.1586 0.0018 0 0 · · ·

6 0.8548 0.1131 0.0207 0.0038 0 · · ·

· · · · · · · · · · · · · · · · · · · · ·

45 0 0 0.9937 0.0024 0 · · ·

46 0 0 0 0.0141 0.9855 · · ·

47 0 0 0 0 0.0030 · · ·

48 0 0 0 0 0 · · ·

49 0 0 0 0 0 · · ·

50 0 0 0 0 0 · · ·

Table 3.1: Adaptive attack strategy for λ1 = 0.1, λ = 0.1, 1 ≤ a ≤ 50, and 1 ≤ d ≤ 50

therefore, optimal strategies that use this information remain globally optimal. Availability of

this information, however, in not possible in practice. The time to decide the inter-arrival time of

the nth probe is when the n− 1th probe is delivered to the scheduler. Since each probe requires

at least one time-slot to be processed by the scheduler, the queuing delay of the n − 1th probe

cannot be known to the attacker eve if the queue is empty. Moreover, if the queue is clogged, a

higher number of probes are stuck and their delays are unknown to the attacker. Realistically, the

attacker can only use the queue delay of probes that have been served by the scheduler. However,

he can use the inter-arrival times of all probes upto probe n− 1.

Let sn−1 denote the separation-of-index between the n−1th probe and the latest probe which

left the system when the n − 1th probe entered the system; i.e. at time-slot tn−1. That is,
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the index of the latest probe which left the system at time-slot tn−1 is n − 1 − sn−1. As the

inter-arrival time for the nth probe, an, is decided at this moment, the attacker possesses the

queuing delay information of all probes from 1 to n − 1 − sn−1 but not for any later probe as

they are still in the queue. Additionally, the attacker knows the inter-arrival time ai for all i ∈

{1, · · · , n− 1}. Thus, the inter-arrival time of the current probe, an can be chosen as a function

of the available information under the probability distribution p
(
an|sn−1, [aj]

n−1
1 , [Dj]

n−1−sn−1

1

)
which specifies the attack strategy. Let qn−1 ≡ sn−1, [dj]

n−1
1 , [dj]

n−1−sn−1

1 represent the collection

of all parameters known to the attacker at time-slot tn−1. We assume that the attacker maintains

this as an internal state. We can analyze denominator and numerator of the leakage function

similar to previous sections.

H(Xn||An) =
∑
n

H(Xn|An)

H(Xn|An) =
∑
an

p(an)H(Xn|an)

=
∑

an,qn−1

p(qn−1)p(an|qn−1)H(Xn|an)

=
∑

an,qn−1

p(qn−1)p(an|qn−1)HB(λ1, an)

and

H(Xn||An, Dn) =
∑
n

H(Xn|An, Dn, Dn−1)

=
∑

an,dn−1

p(an, dn−1)PEQ(an, dn−1, )H(Xan,dn−1)

=
∑

an,dn−1,qn−1

p(qn−1)p(an, dn−1|qn−1)PEQ(an, dn−1)H(Xan,dn−1)

A generic strategy that uses complete history has unrealistic memory requirement because

with increasing n the state-space of qn increases exponentially. We overcome this limitation by

showing that to achieve maximal leakage, the attacker does not need to store entire past. Addi-

tionally, we prove a set of results that enable the identification of optimal real-world strategies

while using partial feedback. Specifically,
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Figure 3.7: Real-world adaptive strategies

Theorem 9. Let q̄n−1 ≡ sn−1, [aj]
n−1
n−sn−1

, dn−1−sn−1 . Then,

1) The optimal real-world adaptive strategy; one which is limited to use the delay of packets

served by the scheduler, only requires to use the parameters q̄n−1 to determine an.
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2) For the limit Lc = lim
n→∞

1 − H(Xn||An,Dn)
H(Xn||An)

exists if limiting distributions lim
n→∞

p(q̄n−1) and

lim
n→∞

p(dn−1|q̄n−1) must exist.

3) For any time-invariant adaptive strategy; i.e. p(an = a|q̄n−1 = q̄) = p(a|q̄), lim
n→∞

p(q̄n−1) and

lim
n→∞

p(dn−1|q̄n−1) exist.

4) q̄n for an irreducible and commuting Markov chain and therefore, lim
n→∞

p(q̄n) can be computed

as the stationary distribution of the Markov chain.

Proof. The proof relies on the relationship between the queuing delay of two probes di and dj ,

where i < j without loss of generality. For these probes, we have

dj = di +

j∑
k=i+1

(xk + 1− ak)

Due to this, when analyzing the delay of a probe, the attacker only needs to store the delay of

last-available probe and the inter-arrival times of all probes in-between. If the latest probe served

by the system is n − sn, then the delay of all probes j > n − sn is independent of past delay

observations. This fact is illustrated in Figure 3.7a and 3.7b.

If the attacker stores the information q̄n ≡ sn, dn−sn , [a]nn+1−sn , then q̄n+1 depends only the

choice of an+1 and q̄n. The constituent terms of H(Xi|Ai) and H(Xi|Ai, Di, Di−1) also de-

pend only on these factors and the system can be modeled as a Markov Decision Process. The

dominance of Markov policies immediately proves 1). 2), 3), and 4) can be proven using the

relationship between delays. Detailed proofs are provided in the Appendix B.1.

The optimal real-world strategy can be found by solving the linear program
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Maximize

1 −

∑
qi,ai+1,di

p(di+1|qi)p(ai+1, qi)PEQ(di, ai+1)H(Xdi,ai+1
)∑

qi,ai+1

HB(λ1, ai+1)

Subject to

1: 0 ≤ p(ai+1, qi) ≤ 1, for all Ai+1, qi

2:
∑
ai+1

p(ai+1, qi) = π(qi) for all qi

3: π(qi = j) =
∑∞

j=i−1 π(qi = k)pjk, for all j ∈ {0, 1, · · · }

4:
∑
qi,a

ai+1p(Ai+1, qi) = 1/λ2

5:
∑
q

πq = 1

6: 0 ≤ πq ≤ 1, for all q

Unlike previous scenarios, the number of variables in the linear program to compute optimal

real-world adaptive strategies are prohibitively large. For a ∈ {1, 2, · · · , |A|}, s ∈ {1, 2, · · · , |S|},

d ∈ {1, 2, · · · , |D|}, the number of possible states |Qn| ≈ |D|× |A||S|−1. The size of probability

transition matrix, p(An+1|Qn), is O(|D| × |A||S|). For typical values of |A| = |D| = 50 and

|S| = 10, the number of control variables in the linear program grow to ≈ 1018. This dimension

is significantly high to be solved in reasonable time with any real-world attacker’s computational

power. Alternate methods and approximations may be required to solve this linear program

realistically. Unfortunately, they are out of the scope of this thesis.

3.6 Conclusions

Results presented in this chapter demonstrate that quantitative modeling of side channels can

even allow an attacker to develop optimal attack strategies. Optimal utilization of attack re-

sources is important to launch real-world attacks against large systems such Tor. The enhance-

ment in leakage due to such strategies can be very high to ignore. For the setup analyzed in this

chapter, we were able to increase the leakage of the system upto 1000% over Geometric probing,
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despite not using feedback. With feedback, we were able to demonstrate a theoretical increase

of upto 30% over non-adaptive strategies. While real-world optimal adaptive strategies require

solving a large linear program, a determined attacker can either find the resources to it or find

sub-optimal strategies that require less information.

At this point it is important to discuss the limitation of this analysis to a very specific packet

arrival model from the user’s side and the implication of a different model on leakage and optimal

strategies. Optimal adaptive strategies identified in this chapter satisfy the intuition that adaptive

strategies allow the attacker to probe at a faster rate when the queue is empty and probe slowly

when queue is full. This intuition is likely to hold for alternative arrival process for user’s packets.

While more accurate models for real-world packet traffic exist, the leakage of the system under

those models is likely to be higher due to the dependence between packet arrivals. Therefore,

Bernoulli distribution for user’s packet arrival forms the worst-case scenario from the attacker’s

point-of-view.
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Chapter 4

Side Channels in Cryptographic

Algorithms

Asymmetric cryptosystems, such as RSA [54] and Diffie-Hellman Key-Exchange [15], require

computationally-intensive modular exponentiation/multiplication operations. This limits their

applicability on devices with low processing capabilities or in services which require signifi-

cant data processing rates. To address this issue, several algorithms have been developed to

perform modular multiplications efficiently in hardware. One of the most efficient and widely-

used algorithms, named Montgomery Multiplication (MM) (Algorithm 4), was devised by Peter

Montgomery [46]. Montgomery Multiplication replaces computationally-expensive divisions

with the modulus M to multiplications/divisions with the Montgomery reduction parameter R.

R is chosen to be a power of two; i.e. R = 2x for some integer x, and therefore, multiplications

and divisions with R are computationally-inexpensive bit-shifts. However, Montgomery Mul-

tiplication occasionally requires an extra reduction step depending on the relative values of the

multiplicands and modulus, which causes a discrepancy in the amount of time required for the

multiplication. This leads to the creation of a side channel which has been exploited to break

several cryptosystems [37],[6],[13].

Goal of timing attacks against modular exponentiation-based cryptosystems is to either learn
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the secret key/exponent in the case when modulus is known or to learn the modulus in case it

is unknown. The second scenario arises under RSA implementation with Chinese Remainder

Theorem which uses RSA prime factors to perform exponentiation. In this analysis, we com-

pute the leakage of secret key/exponent-bits through this side channel and the accuracy of the

attacker in learning the secret modulus for the latter case. Our quantitative analysis is based on

the theoretical model developed by Schindler and others [58],[57],[56]. This model relies on

the computation of probability of an extra reduction in individual Montgomery Multiplications.

Using this modeling, we make the following contributions in this analysis:

• Reliability rate for estimation of unknown prime modulus: We compute the reliability

rate of an attacker that aims to learn the modulus used in a modular exponentiation. This

scenario arises in RSA implementation that use CRT. In such cases, the modulus is one of

the prime factors of the RSA modulus. We compute the reliability rate for this scenario

and discover the relationship between reliability rate, Montgomery reduction parameter,

and the size of the RSA prime.

• Key/exponent leakage in the Montgomery Multiplication routine: We develop a new

model for the timing side channel in the Montgomery Multiplication routine and provide

lower and upper bounds on the leakage of the routine for non-adaptive strategies. We show

that the leakage of the routine decreases with increasing Montgomery parameter.

• Analysis of countermeasures and their performance trade-offs: Lastly, we employ our

leakage model to quantify the efficacy of two popular countermeasures against timing

attacks, namely, exponent blinding and caching. We compute the reduction in leakage of

the Montgomery Multiplication routine in the presence of each countermeasure and their

performance trade-offs with resource budgets. Importantly, we identify the conditions

under which one countermeasure outperforms the other.

First, we briefly review the specifics of exponentiation algorithms and the Montgomery Mul-

tiplication routine.
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4.1 Preliminaries

One of the key operations in modular exponentiation based cryptographic algorithms, such as

RSA and DH, is to compute yd(mod M), where y is the ciphertext, d is the exponent, and M is

the modulus. This operation is performed by a series of multiplications, where the multiplicands

depend on the exponent bit. A typical modular exponentiation is performed using the square-

and-multiply algorithm:

Data: input: y, exponent: d, modulus: M

Result: c = yd(mod M)

temp := y;

for i=2:|d| do

temp := temp2(mod M);

if bi == 1 then

temp = temp ∗ y(mod M);

end

end
Algorithm 4: Square-and-multiply algorithm for exponentiation

If the exponent bit is 0, the only operation performed is squaring of the temp value. If the

exponent bit is 1, an additional multiplication with the ciphertext y is performed. Each of these

multiplications is performed using an optimized modular multiplication algorithm: Montgomery

Multiplication (Algorithm 4). This algorithm succeeds in performing modular multiplication

efficiently because it transforms multiplication/division operations under an odd-modulus M

with similar operations under another base R which is chosen to be a power of two; i.e. R = 2x,

for some x. Such operations are simple bit-shifts and therefore, computationally fast. Let R−1

represents the multiplicative inverse of R modulo M and M∗ is an integer such that RR−1 −

MM∗ = 1. Montgomery Multiplication invokes two transforms: Ψ(a) = aR(mod M) and

Ψ−1(a) = aR−1(mod M).
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To multiply two numbers a and b, the Montgomery Multiplication routine takes Ψ(a), Ψ(b)

as inputs and outputs Ψ(c), where c = a× b(mod M).

Data: Ψ(a), Ψ(b), M

Result: Ψ(c), where c = a× b(mod M)

Step 1: z := Ψ(a)Ψ(b);

Step 2: z′ := (z(mod R)M∗)(mod R);

Step 3:Ψ(c) := (z+z′M)
R

;

if Ψ(c) ≥M then

Step 4: Ψ(c) := Ψ(c)−M ;

end
Algorithm 5: The Montgomery Multiplication routine

An important advantage of using the Montgomery Multiplication routine for modular multi-

plication is that the output is already in the form suitable for the next multiplication. Therefore,

the transforms Ψ and Ψ−1 are invoked only once during a modular exponentiation. Step 4 of

the Montgomery Multiplication routine is known as the extra-reduction step and is the cause of

timing variations in the Montgomery Multiplication routine. Since a modular exponentiation is

simply a series of Montgomery Multiplications, the timing discrepancy of a modular exponenti-

ation depends on the number of extra reductions in these Montgomery Multiplications. Next, we

review the probability of an extra reduction in each individual Montgomery Multiplication and

stochastic behavior of total timing for a modular exponentiation.

4.2 Stochastic Modeling for Timing Side Channel

The building block of the stochastic modeling of modular exponentiation is the probability of

observing an extra reduction in each individual (or constituent) Montgomery Multiplication op-

eration. This probability depends on the value of the temp variable, the ciphertext y, and the
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current bit of the exponent b as it decides whether is multiplication is temp2 or temp × y. We

first start by computing the probability of an extra reduction in each case. This computation is

based on results developed by Schindler [57, 58], Sato et al. [56], and Walter [64].

4.2.1 Probability of an Extra Reduction in a Single Modular Multiplica-

tion

The following lemma describes the conditions under which an extra reduction in Montgomery

Multiplication is required.

Lemma 1. [56, 58, 63, 64]

i. a) Montgomery Multiplication of ciphertext y and temp moduloM requires an extra reduction

step iff
y × temp
RM

+
(y × temp×M∗)(mod R)

R
≥ 1

i. b) From square-and-multiply and the Montgomery Multiplication routine, we have

tempi
M

=

(
y tempi−1

M2

M

R
+
y tempi−1M

∗(mod R)

R

)
(mod1)

An extra reduction is carried out iff

tempi
M

<
y

M

tempi−1

M

M

R

Similarly,

ii.a) Montgomery Multiplication of temp and temp modulo M ; i.e. squaring, requires an extra

reduction step iff
temp2

RM
+

(temp2 ×M∗)(mod R)

R
≥ 1

ii.b) From square-and-multiply and the Montgomery Multiplication routine, we have

tempi
M

=

(
temp2

i−1

M2

M

R
+
temp2

i−1M
∗(mod R)

R

)
(mod1)

An extra reduction is carried out iff

tempi
M

<
temp2

i−1

M2

M

R
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Proof. The proof is a direct implication of Step 4 in Algorithm 2 and properties of modulo 1.

As repeated multiplications are performed for an exponentiation, the behavior of tempi can

be modeled as a random-variable which equi-distributed on Zm. This implies that the occurrence

of an extra reduction in a Montgomery Multiplication is also random. We have,

Lemma 2. [58] a) Let temp be random variable equi-distributed on ZM and y be a fixed

ciphertext. Then,

Prob( extra reduction in y × temp(mod M)) =
y(mod M)

2R

b) Let temp be random variable, equi-distributed on ZM . Then,

Prob(extra reduction in temp2(mod M)) =
M

3R

Proof. The proofs rely on the fact that the terms temp
M

, (y×temp×M∗)(mod R)
R

, and (temp2×M∗)(mod R)
R

behave like i.i.d. random variables, uniformly-distributed over (0, 1). Detailed steps can be found

in Appendix C.1.

Let Si ≡ tempi
M

and Wi ∈ {0, 1} be a random variable that represents the occurrence of an

extra reduction (wi = 1) or not (wi = 0). tempi in a modular exponentiation behaves like an i.i.d.

random variable equi-distributed over ZM [56, 57]. Therefore, Si behaves like an i.i.d. random

variable uniformly-distributed over the set (0, 1). Using the conditions presented in Lemma 1,

we compute the conditional probability distribution p(w|b, y) as:

The stochastic model presented in Table 4.1 forms the basis of stochastic model for total

decryption timing and leakage analysis in Section VI. Next, we present the stochastic modeling

of total timing behavior of a modular exponentiation.

4.2.2 Timing Behavior of Modular Exponentiation

For the same exponent d, the number of squarings and multiplications performed in an exponen-

tiation is the same. However, the probability of observing an extra reduction in each Montgomery
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P (W |B, Y ) Bi = 0 Bi = 1

Wi = 0 P
(
Si ≥

S2
i−1M

R

)
P
(
Si ≥ Si−1yiM

R

)

Wi = 1 P
(
Si <

S2
i−1M

R

)
P
(
Si <

Si−1yiM
R

)
Table 4.1: Conditional probability distribution, P (W |B, Y )

Multiplication depends on both y and M . This probability also depends on whether the Mont-

gomery Multiplication is a squaring or a multiplication. Let |d| and d1 denote the total number of

bits and the total number of 1’s in the in the binary representation of the exponent d, respectively.

Then, in the modular exponentiation yd(mod M), a total of |d| squarings and d1 multiplications

are performed. We assume that each of these operations requires c units of times. An additional

cER units of time are required if an extra reduction is performed. The conditions and probabilities

of observing an extra reduction in these operations are described in Lemma 1 and Table 4.1.

Let, Wi ∈ {0, 1} denote the requirement of an extra reduction for the ith Montgomery Mul-

tiplication, then the total time required to compute yd(mod M), T (y) is given by

T (y) =

|d|∑
i=1

(c+ cERwi) +

d1∑
i=1

(c+ cERwi).

From Table 1, it can be seems that the probability of wi = 0/1 depends on bi, y, si and

si−1. Therefore, random variables Wi’s are neither independent nor identically distributed as

their distribution depends on the operation being a squaring or a multiplication. They are also

dependent on the value of the previous state of the algorithm; i.e. Si−1. Still, the total timing of

a decryption, T (y), is the sum of a large number of dependent random variables. Its p.d.f. can

be computed using the central limit theorem [32].

Theorem 10. [57] The total time T (y) to compute yd(mod p) can be represented by a normally-
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distributed random variables N (µ, σ2), where

µ = c(|d|+ d1) + cER|d|
M

3R
+ d1

y

2R

and

σ2 = c2
ER

{
|d|

(
M

3R
−
(
M

3R

)2
)

+ d1

(
y

2R
−
( y

2R

)2
)

+2(d1 − 1)CovSM + 2d1CovMS + 2(|d| − d1)CovSS

}
where,

CovSM =
1

10

M2

R2

y

R
− M

3R

M

2R

CovMS =
1

12

y3

R3

M

R
− M

3R

M

2R

CovSS =
1

21

M4

R4
− M

3R

M

2R

Proof. A consequence of central limit theorem for weakly-dependent variables. Detailed steps

are presented in Appendix C.2.

4.3 Reliability Rate for Timing Attacks on Modular Exponen-

tiation with Unknown Exponent

In certain cases, the goal of the attacker is to learn the modulus being used in a modular ex-

ponentiation. For example, this scenario occurs in RSA implementations that use the Chinese

Remainder Theorem (CRT) (Algorithm 3). CRT is used because it reduces the computation of

yd(mod M), with two exponentiations albeit with smaller exponents and modulus, which are

unknown. As the modulus is unknown, timing attacks that reveal the secret key are not possible.

However, the secret modulus itself can be learned as computation times depend on it. Knowl-

edge of exponentiation modulus in this scenario allows the attacker to break RSA as the modulus

is one of the prime factors of the RSA modulus. We compute the optimal reliability rate of an

attacker in learning this information.
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4.3.1 Problem Formulation

We formulate the problem of estimating the unknown modulus as a multi-hypothesis testing

problem. Let the modulus, M , be chosen from an ordered set of possible modulus M. The

attacker sequentially sends ciphertexts yi to the oracle which then decrypts the ciphertext with a

secret exponent, d, and modulus, M . The side-channel outputs the time taken for this operation,

T (yi), to the attacker. The attacker uses his previously issued inputs and observed outputs to

decide the next ciphertext through a function yi = f(yi−1, T i−1(y)); i.e. is adaptive. After

sending n inputs and observing the corresponding outputs, the attacker produces an estimate

of the underlying modulus, M̂ , using an estimator g(yn, T n(y)) The attacker makes an error if

M̂ 6= M . The optimal reliability rate of the attacker, R∗opt is measured as:

R∗opt = max
f,g

lim
n→∞

− log2 P [M̂ 6= M ]

n

For given yi and M , T (yi) behaves like a normally-distributed random variable, where the

mean, µyi,M , and variance, σ2
yi,M

, are described in Theorem 10. Since the difference between

variance of T (y) for different parameter values is not significant, we assume it to be a constant

value σ2. With the model of this hypothesis test available, we use Naghshvar and Javidi’s work on

the optimal error-exponent for a general multi-hypothesis testing problem [49]. This computation

consists of the following steps.

i) For each modulus Mi ∈ M and a given probability distribution on the input ciphertexts,

Q(y), minimum expected KL divergence is computed with respect to all Mj 6= Mi. That is,

R(i, Q) = min
j 6=i

∑
y

q(y)D
[
N (µy,Mi

, σ2)||N (µy,Mj
, σ2)

]
ii) Next, a probability distribution Q∗(i) is computed that minimizes R(i, Q). The corre-

sponding expected KL-divergence, R̄(i) is computed as,

R̄(i) = max
Q

R(i, Q)
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iii) Finally, the harmonic mean of all R̄(i) is computed over all Mi ∈ M. This value is the

optimal error exponent R∗opt

R∗opt =
1∑
i

1
R̄(i)

R∗opt is the maximum error-exponent that can be achieved by any sequential and adaptive

adversary and therefore, is the optimal reliability rate.

We start by computing R(i, Q) for the Mi ∈M. The KL divergence between two normally-

distributed random variables with different means and same variance, N (µa, σ
2) and N (µb, σ

2)

can be computed as:

D
[
N (µa, σ

2)||N (µb, σ
2)
]

=
(µa − µb)2

2σ2

Lemma 3. For Mi ∈M and given probability distribution, Q, on y, we have

R(i, Q) =
|d|2

2σ2R2
min{Rl(i, Q), Ru(i, Q)}

where,

∆i−1 = Mi −Mi−1

∆i+1 = Mi −Mi+1

Rl(i, Q) = ∆2
i−1

[
1

9
− 5

48
Q(y > Mi))

]
+

[
Mi−1∆i−1

6
+
M2

i−1

16

]
Q(Mi−1 < y < Mi)

Ru(i, Q) = ∆2
i

[
1

9
− 5

48
Q(y > Mi+1))

]
+

[
Mi∆i

6
+
M2

i

16

]
Q(Mi < y < Mi+1)

Detailed proof of Lemma 3 is provided in Appendix C.3. The importance of Lemma 3 is

that it reduces the search of minimum KL divergence over the entire setM to two elements of

the set, namely the lower and higher elements with respect to Mi. To compute the probability

distribution Q that maximizes R(i, Q), we need an ordered list of elements inM that can allows

to compute the preceding and succeeding elements of Mi. This implies that the analysis has be

to be performed separately for differentM. We compute the reliability rate when the modulus

is prime number of a certain size, as this scenarios arises in RSA with CRT.
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Analysis for prime modulus: Although there is no maintained (or maintainable) list of primes

of a given size: |d|-bits, we still proceed with this analysis by approximating the prime gaps

between two consecutive |d|-bit primes with the average prime gap for such primes.

Lemma 4. The number of primes of length |d|-bits is (2|d|−2|d|−1)
|d| log2 e

, and their average prime gap is

|d| log2 e.

Proof. A corollary of the prime counting theorem [31].

Assuming, ∆i−1, ∆i ≈ |d| log2 e, we get

Lemma 5.

R̄(i) ≡ max
Q

R(i, Q) ≈ |d|2p2
i

32σ2R2
.

where pi is the ith prime of length |d| bits.

Detailed proof of Lemma 4 can be found in Appendix C.4. Finally, substituting R̄(i), we

have

Theorem 11. The optimal error-exponent, R∗opt for detecting underlying RSA primes of |d| bits

while using Montgomery reduction parameter, R, can be computed as

R∗opt =
|d|2

32σ2R2

 |P|d||∑
p∈P|d|

1
p2


where P|d| is the set of all primes of length |d|-bits.

Theorem 11 computes the optimal reliability rate that can be achieved by an attacker who

estimate the underlying prime modulus. We can draw two conclusions from this analysis. One,

that the optimal reliability rate is positive and therefore, the attacker can learn the secret prime.

Second, that the optimal reliability rate is inversely proportional to the Montgomery reduction

parameter,R. SinceR has to be larger than the modulus, system designers should select the value

of theR as the largest power of 2 that is permissible by the underlying computing architecture. A

limitation of this analysis is that it needs to be performed separately for differentM. To perform
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a general analysis, we compute the leakage of the Montgomery Multiplication routine itself in

the net section.

4.4 Leakage of the Montgomery Multiplication Routine

The root cause of the timing side channel in modular exponentiation-based cryptosystems is the

inconsistency of extra reductions in the underlying multiplication routine; i.e. the Montgomery

Multiplication routine. Most existing analyses, including that performed in the previous section,

focus on the analysis of specific attacks. However, the analysis of information leakage in the

Montgomery Multiplication routine itself can be of great importance as it can allow general-

ization of analysis for all cryptographic algorithms that employ the Montgomery Multiplication

routine. Simultaneously, this analysis can allow system designers to implement countermeasures

directly in the implementation of the Montgomery Multiplication routine and also analyze their

performance. In this section, we develop a model for the timing channel present in the Mont-

gomery Multiplication routine and compute its leakage.

4.4.1 A Side-channel Model for the Montgomery Multiplication Routine

The side-channel model for the Montgomery Multiplication routine is developed in line with the

general side-channel model presented in Chapter 1. The algorithm is abstracted as a discrete-

time, two-input-single-output system. In every time-slot, the user issues a binary input, bi ∈

{0, 1}, which is the current exponent bit. The attacker issues a corresponding input ciphertext,

yi ∈ ZM , to the side channel. The Montgomery Multiplication routine maintain a state Si ≡
tempi
M

in each time-slot. The variable tempi is the temporary variable maintained by a square-

and-multiply algorithm. Depending on bi, the Montgomery Multiplication routine is used to

either perform temp2
i (modM) (for bi = 0) or yi×tempi(modM) (for bi = 1). The side channel

produces a corresponding output bit wi ∈ {0, 1} with the attacker observes. wi = 0 implies that
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the ith Montgomery Multiplication operation did not require an extra reduction, whereas wi = 1

implies that an extra reduction was required. Figure 4.1 illustrates the side-channel model.

Side channel

Attacker

User
bi ∈ {0, 1}

yi ∈ ZM

P (wi|wi−1, yi, bi)

yi = f(yi−1, wi−1)

wi ∈ {0, 1}

Figure 4.1: Timing side channel in the Montgomery Multiplication routine

The stochastic relationship between the side-channel inputs, output, and internal state vari-

ables is as specified in Table 4.1, where Si’s behave as i.i.d. random variables, uniformly-

distributed over (0, 1). The goal of the attacker is to estimate the user’s input bit-sequence Bn,

given the knowledge of his inputs, Y n and the side-channel outputs, W n. The attacker may be

adaptive; i.e. choose his next input, yi, based on previously issued inputs, yi−1, and observed

outputs, wi−1, using a stochastic function p(yi|yi−1, wi−1). If the probability distribution on the

attacker’s inputs p(yi) is independent of the past, then the attacker is said to be non-adaptive. The

leakage of the Montgomery Multiplication routine, LMM , for an attack strategy, p(yn|yn, wn) is

defined as

LMM = lim
n→∞

1− H(Bn||Y n,W n)

H(Bn)

Next, we compute the side-channel leakage of the Montgomery Multiplication routine for

non-adaptive strategies under this model.
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4.4.2 Bounds on the Leakage of the Montgomery Multiplication Routine

for Non-adaptive Strategies

First, we compute a lower-bound on the information leakage of the Montgomery Multiplication

routine to show that leakage is non-trivial; i.e. LMM ≥ 0. This suffices to demonstrate that

information is leaked through this side channel at a positive rate.

Theorem 12. For a non-adaptive strategy, specified by the probability distribution p(y)

LMM ≥ 1− Ey

[(
y

4R
+
M

6R

)
H

(
y

4R
y

4R
+ M

6R

)
+

(
1− y

4R
− M

6R

)
H

(
1− y

4R

1− y
4R

+ M
6R

)]
Proof. To compute a lower bound onLMM , we compute an upper-bound onH(Bn|Bn−1, Y n,W n).

We have H(Bn||Y n,W n) =
∑

nH(Bn|Bn−1, Y n,W n). Using Césaros’s mean theorem [48],

lim
n→∞

H(BN ||W n, Y n)

n
= lim

n→∞
H(Bn|Bn−1, Y n,W n)

Further, we have

Hcon(n) ≤ H(Bn|Wn, Yn)

=
∑
yn,wn

p(yn)p(wn|yn)H(Bn|wn, yn)

=
∑
yn

p(yn)

[(
yn
4R

+
M

6R

)
H

(
yn
4R

yn
4R

+ M
6R

)
+

(
1− yn

4R
− M

6R

)
H

(
1− yn

4R

1− yn
4R
− M

6R

)]

Here, we have assumed that the attacker’s input strategy is non-adaptive. However, the max-

imum leakage achieved by adaptive strategies can only be higher than that achieved by non-

adaptive strategies and therefore, the lower-bound on leakage still holds.

An upper-bound on the leakage of a non-adaptive strategy is computed next. Upper-bounds

can be used to evaluate performance of countermeasures as will be shown in the next section.

Theorem 13. The leakage of the Montgomery Multiplication routine, LMM , for a given proba-

bility distribution P (y) can be computed as

LMM ≤
∑
y

p(y)

[
y

2R
− M

3R
− y3

3M2R

]
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Proof. Again, let Hcon(Bn) = H(Bn|Bn−1,W n, Y n). Then,

Hcon(Bn)
(a)

≥ H(Bn|Bn−1,W n, Y n, Sn)

(b)
= H(Bn|Wn, Yn, Sn−1, Sn)

(a): Conditioning can only reduce entropy.

(b): Given wn, sn, sn−1, and yn, bn is independent of the past (Table 4.1).

From the stochastic relationship between these variables, presented in Table 4.1, one can see

that wn = 0, irrespective of the value of bn, iff sn > max{ s
2
n−1M

R
, sn−1ynM

R
}. Hence, if this

relation is satisfied, the attacker cannot guess the user’s bit and Hcon(Bn) = 1. Similarly, if

sn ≤ min{ s
2
n−1M

R
, sn−1ynM

R
}, wn = 1 irrespective of the value of bn.

Therefore, the attacker can only learn the user’s bit with certainty is min
{
s2n−1M

R
, sn−1ynM

R

}
<

sn ≤ max
{
s2n−1M

R
, sn−1ynM

R

}
. For every other case, Hcon(Bn) = 1. This relationship can be

simplified by considering two different ranges of sn−1: a) sn−1 ∈
(
0, yn

M

)
and b) sn−1 ∈

(
yn
M
, 1
)
.

Hcon(Bn) ≥ 1−
∑
y

p(y)

∫ y
M

0

∫ sn−1ynM

R

s2n−1M

R

dsndsn−1 +

∫ 1

y
M

∫ s2n−1M

R

sn−1ynM

R

dsndsn−1


= 1−

∑
y

p(y)

[
M

3R
− y

2R
− y3

3M2R

]
LMM ≤

∑
y

p(y)

[
M

3R
− y

2R
− y3

3M2R

]
This concludes the proof.

In the next section, we show that this model not only allows designers to quantify the leakage

of their vanilla implementations but also to incorporate different countermeasures and quantify

the security guarantees provided by them.

4.5 Countermeasures

A number of countermeasures have been developed to prevent information leakage in cryptosys-

tems. We focus on the two most popular countermeasures: a) exponent blinding and b) caching.
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Exponent blinding thwarts timing attacks by adding a different random value to the exponent for

each exponentiation. In contrast, caching thwarts such attacks by pre-computing the output of

certain multiplicand pairs; i.e. maintaining multiplication table. The algorithm does a look-up

for all such pairs and therefore, reduces the number of extra reductions. Despite the mainstream

belief of the strength of these countermeasures, not many quantitative guarantees are available in

the literature. In this section, we quantify the security guarantees of both countermeasures and

study their performance trade-offs under resource constraints.

4.5.1 Exponent Blinding

In his seminal paper on timing attacks in cryptosystems [37], Paul Kocher also proposed a coun-

termeasure against such attacks, named exponent blinding. In this countermeasure, the expo-

nent, d, is added with a random multiple of the Euler’s totient function, φ(M) of the modu-

lus M . As opposed to decrypting a ciphertext y by computing yd(mod M), two exponentia-

tions are performed with random exponents. First, yd+rφ(M)(mod M) is computed, followed

by yrφ(M)(mod M). The results of these computations are divided to obtain yd(mod M). The

salt, r, is chosen randomly for each ciphertext. As each of these operations is performed with

random exponents selected fresh for each ciphertext, original timing attacks are hindered. While

traditionally, it was believed that exponent blinding completely defeats all timing attacks, recent

works have shown that timing attacks are still possible under this countermeasure albeit with

significantly higher number of measurements [2, 59].

We study the efficacy of exponent blinding by accommodating it in the leakage model from

previous section. To emulate the effect of a random salt, we assume that along with the user’s in-

put bit bi, a random bit ri is generated which remains unknown to the attacker. Two Montgomery

Multiplication operations are performed for each ciphertext yi. First multiplication is performed

using bi⊕ri as the exponent bit and emulates yd+rφ(M)(modM) operation. This operation reveals

a binary value w1
i to the attacker, where w1

i = 1 if an extra reduction is required and 0 otherwise.
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Second multiplication is performed using ri as the exponent bit and emulates yrφ(M)(mod M).

This operation reveals another binary value w2
i to the attacker, where w2

i = 1 if an extra reduction

is required and 0 otherwise. Given, his knowledge of yi and w(1,2)
i , the goal of the attacker is to

learn the user’s input bit bi. The leakage of the system under this countermeasure is measured as:

Lblind := lim
n→∞

1− H(Bn||Y n,W (1,2)n)

H(Bn)

The computation of Lblind can be performed similarly to the computation of LMM because

the probability of observing an extra reduction in each multiplication is independent of the other.

bi is only estimated correctly if both ri⊕ bi and ri are estimated correctly. Therefore, conditional

entropy of Bi given Yi and W (1,2)
i is only dependent on the conditional entropy of ri ⊕ bi and ri,

which are identical. Specifically,

Theorem 14. The upper-bound on the leakage of the Montgomery Multiplication routine for a

non-adaptive attack strategy, p(y), under exponent blinding can be computed as

Lblind ≤
∑
y

p(y)

(
M

3R
− y

2R
− y3

3M2R

)2

Proof. In line with the proof of Theorem 13, we have

H(Bi|Yi,W (1,2)
i ) ≥ H(Bi|Yi,W 1,2

i , S
(1,2)
i , S

(1,2)
i−1 )

Now, bi is computed with certainty if both bi ⊕ ri and ri are computed with certainty. In

any other case, H(Bi| · · · ) = 1. Therefore, we only need to compute the probability that both

exponent bits are learned with certainty. Since the stochastic process for either multiplications is

i.i.d. given yi,

P (bi learned with certainty) = P 2(rilearned with certainty)

Given yi, P (ri is learned with certainty) is identical to P (bi is learned with certainty) in the proof

of Theorem 13. This probability is computed as.

P (ri is learned with certainty) =
M

3R
− y

2R
− y3

3M2R
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Combining these results we have,

H(Bi|Yi,W 1,2
i , S

(1,2)
i,i−1) = 1−

∑
y

p(y)

[
M

3R
− y

2R
− y3

3M2R

]2

Consequently,

Lblind =
∑
y

p(y)

[
M

3R
− y

2R
− y3

3M2R

]2

Since
(
M
3R
− y

2R
− y3

3M2R

)
≤ 1, it is clear that Lblind ≤ LMM . This establishes that blinding

does reduce the side-channel information leakage but does not prohibit it entirely. This finding

is consistent with the existence of attacks in the presence of blinding.

4.5.2 Caching

Caching thwarts timing attacks by pre-computing the product for certain pairs of multiplicands

and caching it in memory. When any such pair is encountered during a Montgomery Multipli-

cation operation, the algorithm looks-up in the table and retrieves the output. This is an O(1)

operation and does not contribute towards the total computation time. It is assumed here that the

attacker does not know the contents of the pre-computed multiplication table and cannot select

specific ciphertexts to avoid look-ups in the table. We compute the security guarantees provided

by this countermeasure under our leakage model and study the performance trade-offs with the

amount of memory dedicated to caching.

To accommodate this countermeasure in our leakage model, we assume that whenever a pre-

computed multiplication is required, the attacker does not know if a reduction is required or

not. In such cases, the output of the side channel, wi, is neither 0 or 1 but an erasure which

is denoted by e. The probability that the attacker observes an erasure depends on the size of

the multiplication table. If the scheme has a memory budget which allows the system to store

Θ number of multiplicand pairs, the given two randomly chosen inputs the probability of the
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attacker observing an erasure equals Θ
M2 . We define the leakage of the modular multiplication

routine under this countermeasure as

Lcache = lim
n→∞

1− H(Bn||Y n,W n)

H(Bn)

where w ∈ {0, 1, e}.

Theorem 15. The upper-bound on the leakage of the Montgomery Multiplication routine for a

non-adaptive attack strategy, p(y), when caching is employed can be computed as,

Lcache ≤
(

1− Θ

M2

)
LMM .

Proof. The leakage of this implementation is the same as the vanilla Montgomery Multiplication

routine if the multiplicands are not cached. When the multiplicands are cached, the attacker

observes an erasure and does not gain any information about the user’s input bit. Averaging both

cases, we get Lcache = (1− α)LMM .

An important implication of Theorem 14 and Theorem 15 is that the reduction in leakage

achieved by both countermeasures is inherently different in nature. Caching reduces the leakage

by a constant multiplier that depends on the memory budget. In contrast, blinding reduces the

leakage of the system by an order, Lblind ≈ L2. Therefore, the choice of countermeasure must

depend on the leakage of the vanilla implementation alongside other factors such as the memory

budget. If the leakage of the vanilla implementation is already low; i.e., L → 0, using blinding

reduces it further. For this case, caching requires very high memory budget to reduce the leakage

at the same level as blinding. In contrast, if the leakage of the vanilla implementation is high;

i.e., L → 1, reduction in leakage achieved by blinding is not significant and therefore, caching is

a preferred countermeasure for such scenarios.
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4.6 Conclusions

We employed stochastic models developed for the Montgomery Multiplication routine to ana-

lyze reliability rate of an attacker who attempts to learn the underlying secret modulus. Our

results show that the reliability rate is non-zero and inversely proportional to the Montgomery

Multiplication reduction parameter,R. Additionally, we developed a new side-channel model for

Montgomery Multiplication that allows us to measure the asymptotic leakage of the side channel.

Under this model we are able to quantify the security provided by well-known countermeasures:

exponent blinding and caching. We show that the reduction in leakage achieved by both coun-

termeasures are fundamentally different. While exponent blinding reduces leakage by an order,

caching reduces the leakage by a constant factor that depends on the memory budget of the coun-

termeasure. This led to identify the conditions under which one countermeasure outperforms the

other.
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Chapter 5

Conclusions and Future Work

This thesis has shown that quantification of information leakage through side-channel attacks

helps find parameters that leak least information, optimal attack strategies that increase the im-

pact of an attack several folds, and finally, countermeasures that are practical and provably-

secure. The key to this quantitative analysis is the modeling of a side channel and choice of leak-

age metrics. We have developed a model that treats a side channel as a two-input-single-output

system where the statistical relationship between inputs and outputs defines the side-channel. We

showed how this model can be used to define precisely a variety of side-channels attacks, such as

private communication detection, privacy attacks against packet schedulers, and timing attacks

against cryptosystems.

In this thesis, we analyze three types of metrics: capacity, reliability rate, and leakage. We

show that capacity is an ill-suited metric as it cannot be associated with a negligible probability

of error of an attacker. Reliability rate is computed in terms of the error-exponent of an attacker

is estimating user’s secret, whereas leakage is measured in terms of the mutual-information rate

between side-channel output and inputs. Reliability rate quantifies the accuracy with which the

attacker learns the secret whereas leakage quantifies the amount of information leaked per-side

channel input. These two metrics are distinct; that is, security of a system under leakage criteria

does not imply its security under reliability rate criteria, and vice versa.
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With a useful model and metrics in place, we analyzed three different side-channel attacks.

We developed a new stochastic definition of private communication detection between two par-

ties and used system models available in the literature for packet schedulers and modular multi-

plication based cryptosystem. Under these models, we computed the reliability rate of an attacker

in estimating private communication relationships and secret RSA primes. We were able to study

the effect of different parameters choices on these reliability rates, such as probing and commu-

nication rates in PCD and the Montgomery reduction parameter in modular multiplication. We

showed that while reliability rate measures the accuracy of an attacker in estimating secret in-

formation, its analysis is specific to an attack setup and cannot be generalized. For generalized

analyses we need the leakage metric.

Using our leakage metric, we were able to compute the rate as which activity-logs leak in-

formation about call-records in Private Communication Detection, the rate at which optimal

strategies leak information about packet arrivals at a scheduler, and the rate at which extra re-

ductions in the Montgomery Multiplication routine leak information about secret exponent bits.

For packet schedulers, we show that an non-adaptive adversary is able to find optimal strate-

gies that cause 1000% more leakage than previously reported in literature. Furthermore, we

showed that adaptive strategies lead to even higher leakage and therefore, must be considered

in side-channel analyses. For the Montgomery Multiplication routine, we introduced a unique

side-channel model which allowed computation of asymptotic leakage. Due to high memory of

this channel, we were not able to compute or identify optimal attack strategies but we developed

lower and upper-bounds on leakage of non-adaptive strategies.

Analysis of information leakage also allowed us to develop strong countermeasures, such as

resource-randomization against PCD, and analyze the efficacy of known countermeasures under

practical conditions. We proposed addition of noise in the PCD side-channel by randomizing

the use of allocated resources and showed that this countermeasure can be used to prevent any

leakage from the side channel. For timing attacks against cryptosystems, we were able to differ-
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entiate between two well-known countermeasures, exponent blinding and caching, and explain

the differences between their security behavior. Lastly, we were able to identify conditions under

which one outperforms the other.

Several interesting questions are left for future research.

Q1: First question pertains to studying the relationship between leakage and reliability rate

metrics. In particular, it seems intuitive that security of a system under leakage criteria implies

that the attack cannot distinguish between user’s side-channel inputs. This is likely to shed new

light on the reliability rate that can be achieved by an attacker. It would be of interest to study the

side-channel conditions and usage mappings under which such relationships can be established.

Q2: For the timing side channel in modular exponentiation-based cryptographic algorithms,

it is important to associate the leakage of the Montgomery Multiplication routine with the leakage

of a general cryptographic algorithm. Intuitively, the amount of information provided due to

the knowledge of individual extra reductions is higher than when the attacker only knows their

sum; i.e. total computation times. However, the scaling of leakage with the key-size is still not

established for a general attack strategy. Finally, the analysis of leakage of the Montgomery

Multiplication routine for all adaptive strategies is required to compute its worst-case leakage.

While the side-channel model proposed in this thesis fits a number of real-world scenarios,

certain extensions of it are of interest to the research community.

E1: Consider the scenario in which the attacker manages to insert a Trojan horse in the system

or the user’s device, which leaks information to the attacker through a parallel, low-capacity

covert channel mechanism. In such case, the definition of joint side-covert side channel capacity

becomes necessary to compute the leakage of the system under this setup. Intuitively, the joint

leakage would be higher than the case without the covert channel and method is necessary to

quantify it.

E2: Another extension relates to the design and analysis of adaptive countermeasures. The

countermeasures presented in the literature and this thesis are typically deterministic and operate
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assuming the worst-case behavior from the attacker. An interesting research question is to design

and compute the efficacy of adaptive countermeasures which observe previous behavior from

the attacker to adjust countermeasure parameters in a way. This has the potential to thwart

most/all attacks with minimal performance penalties. In the most general case, the attacker and

the defender can both be adaptive. Game-theoretic formulations may be required to analyze such

systems.
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Appendix A

Anonymity leakage in communication

systems

A.1 Probability of call-records given activity-logs

If Alice and Bob communicate with each other, the probability of observing a joint activity-log

(aln) is equal to the sum of probabilities of all call records, crn, under the Markov model shown

in Figure 2.4 which lead to the same aln. Let, T (aln) ≡ {crn, s.t. crn map to aln}. Then,

P (aln|H1) ≡ pr(aln) =
∑

crn∈T (aln)

pr(crn).

From Figure 2.5, we can deduce that the only communication states that lead to confusion in

activity status are 11 and 11. P (aln|H1) depends only on the number of transitions of the type

x→ y (O(x→ y)), and the number of sub-sequences of the type x−(11)k−y: (O(x−(11)k−y)),

for x, y ∈ {00, 01, 11} and k ∈ {1, · · · , n−2}. Therefore, P (aln|H1) can be written using these

parameters as:

p(aln) = π0

∏
x,y,k

pO(x→y)
x→y p(x− (11/11)k − y)O(x−(11)k−y)
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Here, we can ignore the initiating and terminating sub-sequences, 11k − y and x − 11k, as

they can only occur once in the sequence and therefore, their asymptotic contribution is zero.

Similarly, an all 11n activity-log sequence can be ignored. The probability of the sub-sequence

x− (11)k − y

p(x− (11/11)k − y) =

πx

[
prx→11 pr

x→11

] pr11→11 pr
11→11

pr
11→11

pr
11→11


k  pr11→y

pr
11→y


Finally, the KL divergence D(P (aln|H0)||P (aln|H1)),

= −
∑
aln

p(aln) log
p(aln)

p(aln)

= −
∑
aln

∑
x,y

p(aln)O(x→ y) log
px→y
px→y

−
∑
aln

∑
x,y,k

p(aln)O(x− (11)k − y) log
p
x−(11/11

k
)y

px−(11)k−y

Finally,

lim
n→∞

∑
aln
p(aln)O(x→ y)

n
= πxpx→y

and

lim
n→∞

∑
aln
p(aln)O(x− (11)k − y)

n
= px−(11)k−y.
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Appendix B

Proof of Theorem 9

The analysis is restricted to time-invariant probability distributions, p(an = a|q̄n−1 = q) =

p(a|q̄).

Proof. The proof is performed in four parts: 1) We show that it suffices for the attacker to use

partial history q̄n to determine an+1, 2) We identify the conditions required for leakage to have an

asymptotic limit, 3) We show that this conditions are satisfied for time-invariant distribution, and

4) We show that limiting distribution of the state q̄n can be computed as the stationary distribution

of a Markov chain. We start with the proof of 1).

1) As can be seen from the functional-dependence graphs in Figure 3.7a and 3.7b, given the

queuing delay of a packet, the queuing delays of all future packets depend only of the delay of

the current packet and inter-arrivals of future packets. Thus, the queuing delay and inter-arrival

times of past packets can be ignored. This implies that the system’s behavior can be represented

as a MDP. At the same time, rewards in this MDP depend only of the previous state, q̄n and

the action an+1. We can again apply dominance of Markov policies to show that the optimal

strategies in this MDP is also Markovian; i.e., of the form p(an+1|q̄n).

Next, we determine the conditions for lim
n→∞

H(Xn||An) and lim
n→∞

H(Xn||An, Dn) to exist

and be computable under Césaro’s mean theorem.
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2) First,

lim
n→∞

H(Xn||An) = lim
n→∞

∑
n

H(Xn|An)

= lim
n→∞

∑
an

p(an)H(Xn|an)

= lim
n→∞

∑
q̄n−1,an

p(q̄n−1)p(an|q̄n−1)H(Xn|an)

=
∑

q̄n−1,an

(
lim
n→∞

p(q̄n−1)
)
p(an|q̄n−1)HB(λ1, an)

This is because, p(an|q̄n−1) is assumed to be time-invariant and HB(λ1, an) depends only on an.

Similarly,

lim
n→∞

H(Xn||An, Dn) = lim
n→∞

∑
n

H(Xn|An, Dn, Dn−1)

= lim
n→∞

∑
an,dn−1

p(an, dn−1)PEQ(an, dn−1)H(Xan,dn−1))

= lim
n→∞

∑
q̄n−1,an,dn−1

p(q̄n−1)p(Dn−1|q̄n−1)p(an|q̄n1)

PEQ(an, dn−1)H(Xan,dn−1)

=
∑

q̄n−1,an,dn−1

(
lim
n→∞

p(q̄n−1)
)(

lim
n→∞

p(dn−1|q̄n−1)
)
p(an|q̄n−1)

PEQ(an, dn−1)H(Xan,dn−1)

Clearly, the limit Lc exists only if the required limiting distributions exist. Now we show that

these limiting distributions exist for strategies under consideration.

3) We show that lim
n→∞

p(dn−1|q̄n−1) exists. Given q̄n−1 ≡ sn−1, dn−1−sn−1 , [aj]
n−1
n−1−sn−1

, dn−1

can be simply determined as

dn−1 =

dn−1−sn−1 +
n−1∑

j=n−sn−1

(xj + 1− aj)

+

.

Given, aj , xj is statistically independent of other parameters. Therefore, for an−1 6= 0,

p(dn−1|q̄n−1) =

(∑
j aj
x∗

)
(1− λ1)

∑
j aj−x∗λx

∗

1 ,
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where x∗ = dn−1 − dn−1−sn−1 +
∑

j(aj − 1).

For, dn−1 = 1,

p(dn−1 = 1|q̄n−1) =
∞∑
d=1

p(dn−1 = d|q̄n−1)

Clearly, dn−1 depends only on the value of q̄n−1 and is independent of n. Therefore, the limiting

distribution is given trivially by the above equation.

4) Finally, we show that the generation of the sequence q̄1, q̄2, · · · is a first-order, irreducible,

and a-periodic Markov-chain. Therefore, the limiting distribution limn→∞ p(q̄n) exists and equals

the stationary distribution of the Markov chain. We start by showing that conditioned on q̄n, q̄n+1

is independent of q̄n−1, q̄n−2, · · · . The inter-arrival time an+1 is determined by the attack strategy

on the basis of q̄n and therefore, is entirely dependent on it. sn+1 is completely determined by

the following relation.

dn−sn +

n+1−sn+1∑
j=n+1−sn

(xj − aj + 1) ≤ an+1 ≤ dn−sn +

n+1−sn+1∑
j=n+1−sn

(xj − aj + 1) + xn+2−sn+1

Similarly, given sn+1, an+1−sn+1 is determined by the following relation

dn+1−sn+1 =

[
dn−sn +

n+1−sn+1∑
j=n+1−sn

(xj − aj + 1)

]+

Clearly, all the terms in the above relation are either constituents of q̄n or are determined by it.

This shows that the stochastic process q̄1, q̄2, · · · is a first-order Markov chain. The same can be

confirmed by analyzing the fd-graph between the states for this strategy as shown in Fig.3.7a and

3.7b where it can be readily seen that qn d−separates qn+1 from qn−1, · · · . The state transition

probabilities for the Markov chain are given as

p(q̄n+1|q̄n) = p(sn+1, dn+1−sn+1 , [aj]n+1−sn+1
n+1
|q̄n)

= p(an+1|q̄n)p(sn+1, dn+1−sn+1|qn, an+1)

For dn+1−sn+1 ≤ an+1 and xn+2−sn+1 ≥ an+1 + 1− dn+1−sn+1 , p(sn+1, dn+1−sn+1|qn, an+1)

=

(∑n+1
j=n+1−sn aj

x∗

)
(1− λ1)

∑n+1
j=n+1−sn

aj−x∗λx
∗

1
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where, x∗ = dn+1−sn+1 − dn−1−sn−1 +
∑

j(aj − 1)

For all other pairs (qn+1, qn), p(qn+1|qn) = 0. It can be seen easily from the transition prob-

abilities that the Markov chain is a-periodic and is a single communicating class, and therefore

irreducible. Therefore, the limiting distribution exists and equals the stationary distribution of

the Markov chain.
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Appendix C

Analysis of Modular Multiplication-based

Cryptographic Algorithms

C.1 Proof of Lemma 2

Proof. Since temp behaves like a random variable equi-distributed on ZM , the behavior of temp
M

is like a random variable uniformly distributed in the range (0, 1). Similarly, the second sum-

mand y×temp×M∗(mod R)
R

also behaves as random variable uniformly distributed in the range (0, 1).

These variables are independent of each other.

Let U := temp
M

and V := y×temp×M∗(mod R)
R

. Then, an extra reduction in the computation of

y × temp(mod M) is performed if y(mod M)
R

U + V ≥ 1. This probability of this event can be

computed as follows.

Pr

[
y(mod M)

R
U + V ≥ 1

]
=

∫ 1

0

∫ 1

1− y(mod M)
R

u

dv du

=

∫ 1

0

y(mod M)

R
u du

=
y(mod M)

2R

Similarly, an extra reduction in the computation of temp2(modM) is performed is M
R
U2+V ≥ 1.
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The probability of an extra reduction in this case can be computed as

Pr

[
M

R
U2 + V ≥ 1

]
=

∫ 1

0

∫ 1

1−M
R
u2
dv du

=

∫ 1

0

M

R
u2 du

=
M

3R

C.2 Timing Behavior for Modular Exponentiation with Un-

known Modulus

We assume that a regular multiplication requires c seconds in the absence of an extra reduction.

Extra reduction adds cER seconds to a multiplication operation. Let, |d| and d1 be the total

number of bits and total number of ones in the binary-representation of the exponent d. In the

computation of yd(mod M), the total number of temp2(mod M) operations equal |d| and total

number of y × temp(mod M) operations equal d1. For cryptographic exponents, d1 ≈ |d|
2

. The

probability of an extra reduction is different for each type of multiplication. On average, the

number of extra reductions equal |d| m
3R

+ d1
y(mod M)

2R
.

We now focus on the sequential Montgomery Multiplications that are performed in modular

exponentiation using the square-and-multiply algorithm. Let, Si := tempi
R

before the i + 1th

multiplication and Vi+1 represent a random variable uniformly-distributed on (0, 1). We have,

Si+1 =


M
R
S2
i + Vi+1 for MM(tempi, tempi)

y
M

M
R
Si + Vi+1 for MM(tempi, yi)

Similarly, let Wi+1 ∈ {0, 1} represent a binary random variable that represents whether

i+ 1th multiplication required an extra reduction. Si’s behave as independent random variables,

uniformly-distributed over (0, 1). From Lemma 2, the random variable Wi is defined as:
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Wi =

 1Si<
M
R
S2
i−1

for MM(tempi, tempi)

1§i< y
M

M
R
Si−1

for MM(tempi, y)

Then, the total time T (y) to compute yd(mod M) can be expressed as

T (y) = c|d|+ cER

|d|+d1∑
i=1

Wi

We have, the expected value of Wi

E[Wi] =


M
3R

for MM(temp, temp)

y(mod m)
2R

for MM(temp, y)

and the variance of Wi

V ar[Wi] =


M
3R
−
(
M
3R

)2 for MM(temp, temp)

y
2R
−
(
y

2R

)2 for MM(temp, y)

However, the sequence of random variables {Wi} are neither independent nor identically dis-

tributed. The co-variance between Wi,Wi+1 can be computed in the following way for three

different cases:

Case I: (Wi ⇐MM(tempi, tempi) and Wi+1 ⇐MM(tempi+1, y))

CovSM = E(WiWi+1)− E(Wi)E(Wi+1)

= E(WiWi+1)− M

3R

y

2R

= Pr[Wi = 1 ∩Wi+1 = 1]− M

3R

y

2R

=

∫ 1

0

∫ M
R
s2i−1

0

∫ y
R
si

0

dsi+1dsidsi−1 −
M

3R

y

2R

=
1

10

M2

R2

y

R
− M

3R

M

2R
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Case II:(Wi ⇐MM(temp, y) and Wi+1 ⇐MM(temp, temp))

CovMS = E(WiWi+1)− E(Wi)E(Wi+1)

= E(WiWi+1)− y

2R

M

3R

= Pr[Wi = 1 ∩Wi+1 = 1]− y

2R

M

3R

=

∫ 1

0

∫ y
R
si−1

0

∫ M
R
s2i

0

dsi+1dsidsi−1 −
y

2R

M

3R

=
1

12

y3

R3

M

R
− M

3R

M

2R

Case III:(Wi ⇐MM(temp, temp) and Wi+1 ⇐MM(temp, temp))

CovSS = E(WiWi+1)− E(Wi)E(Wi+1)

= E(WiWi+1)− M

3R

M

3R

= Pr[Wi = 1 ∩Wi+1 = 1]− M

3R

M

3R

=

∫ 1

0

∫ M
R
s2i−1

0

∫ M
R
s2i

0

dsi+1dsidsi−1 −
M

3R

M

2R

=
1

21

M4

R4
− M

3R

M

2R

It is easy to see that Cov(Wi,Wj) = 0, iff |i − j| > 1. Thus, we can invoke the central limit

theorem for loosely-independent random variables to model the sum
∑|d|+d1

i=1 Wi.

C.3 Proof of Lemma 3

For a given probability distribution Q in y,

R(i, Q) =
1

2σ2
min
j 6=i

∑
y

q(y)[(µy,Mi
− µy,Mj

)2].

Substituting µy,Mi
and µy,Mj

, we get

(µy,Mi
− µy,Mj

)2 = c2
ER

[
|d|(Mi −Mj)

3R
+
d1(y(mod Mi)− y(mod Mj))

2R

]
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Define, ∆M := Mi −Mj and ∆y(mod M) = y(mod Mi)− y(mod Mj).

R(i, Q) =
c2
ER|d|2

2σ2R2
Ey
[

∆M

3
+

∆y(mod M)

4

]2

=
c2
ER|d|2

2σ2R2

[
∆M2

9
+

∆MEy(∆y(mod M))

6
+

E2
y(∆y(mod M))

16

]
The value of ∆y(mod M), depends on whether Mj < Mi and Mi < Mj . We focus only on

values 0 < y < maxM . This restriction ensures that y < 2Mj since Mi and Mj have the same

number of bits.

Case I: (Mj < Mi)

∆y(mod M) =


0 if y ≤Mj − 1

Mj if Mj ≤ y ≤Mi − 1

−∆M if Mi ≤ y

Ey(∆y(mod M)) = Mj{FQ(Mi − 1)− FQ(Mj)} −∆M{1− FQ(Mi)}

E2
y(∆y(mod M)) = M2

j {FQ(Mi − 1)− FQ(Mj)}+ ∆2M{1− FQ(Mi)}

Substituting these values in (4), we get

R(i, Q) =
c2
ER|d|2

2σ2R2
min
Mj<Mi

{
∆M2

[
1

9
− 5

48
[1− Fy(Mi)]

]
+

[
Mj∆M

6
+
M2

j

16

]
[Fy(Mi − 1)− Fy(Mj)]

}
As Mj →Mi; ∆M → 0, Fy(Mi−1)−Fy(Mj)→ 0. The only term that behaves differently

is,

Mj∆M

6
+
M2

j

16
=

Mj(8Mi − 5Mj)

48

Since Mi

2
≤ Mj < Mi and Mj(8Mi − 5Mj) is a parabola that achieves its maximum value at

Mj = 4
5
Mi. This means that (5) has the same value for 3

5
Mi ≤Mj ≤ 4

5
Mi and 4

5
Mi ≤Mj < Mi.

R(i, Q) is lower for the later range. Therefore, the comparison needs to be for 1
2
Mi ≤Mj ≤ 3

5
Mi
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and 4
5
Mi ≤Mj < Mi. Precisely, it is between the values Mj ≈ 1

2
Mi or Mj = Mi−1. Let,

Rl(i, Q) :=
c2
ER|d|2

2σ2R2

{
∆2
i−1

[
1

9
− 5

48
(1− Fy(Mi))

]
+

[
Mi−1∆i−1

6
+
M2

i−1

16

]
[Fy(Mi − 1)− Fy(Mi−1)]

}
Next, we perform the analysis of Mi < Mj .

Case II: (Mi < Mj)

∆y(mod M) =


0 if y ≤Mi − 1

−Mi if Mi ≤ y ≤Mj − 1

−∆M if Mj ≤ y

Ey(∆y(mod M)) = −Mi{FQ(Mj − 1)− FQ(Mi)} −∆M{1− FQ(Mj)}

E2
y(∆y(mod M)) = M2

i {FQ(Mj − 1)− FQ(Mi)}+ ∆2M{1− FQ(Mj)}

Substituting these values in (4), we get

R(i, Q) =
c2
ER|d|2

2σ2R2
min
Mi<Mj

{
∆M2

[
1

9
− 5

48
[1− Fy(Mj)]

]
+

[
−Mi∆M

6
+
M2

i

16

]
[Fy(Mj − 1)− Fy(Mi)]

}

As Mi ←Mj; ∆M → 0, Fy(Mi−1)−Fy(Mj)→ 0. The only term that behaves differently

is,

−Mi∆M

6
+
M2

i

16
=

Mi(8Mj − 5Mi)

48

Since Mi < Mj ≤ 2Mi and Mj(8Mi − 5Mj) is a parabola that is an decreasing function of

Mj in the specified range, the minimum value is achieved for Mj = Mi+1. Combining results

from the two cases, we can be certain that irrespective of the choice of input distribution Q, the

minimum value is achieved for Mj ∈ {Mi−1,Mi+1}. This result reduces the search space for the
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min
Mj 6=Mi

D() to three values, reducing the complexity of search significantly. Let,

Ru(i, Q) :=
c2
ER|d|2

2σ2R2

{
∆2
i

[
1

9
− 5

48
(1− Fy(Mi+1))

]
+

[
Mi∆i

6
+
M2

i

16

]
[Fy(Mi+1 − 1)− Fy(Mi)]

}

Therefore,

R(i, Q) = min{Rl(i, Q), Ru(i, Q)}

C.4 Proof of Lemma 4

Replacing ∆i−1 and ∆i with |d| log2 e in Rl(i, Q) and Ru(i, Q) respectively, we get

Rl(i, Q) =
c2
ER|d|2

2σ2R2

{
|d|2

[
1

9
− 5

48
(1− Fy(pi))

]
+

[
pi−1|d|

6
+
p2
i−1

16

]
[Fy(pi − 1)− Fy(pi−1)]

}
Ru(i, Q) =

c2
ER|d|2

2σ2R2

{
|d|2

[
1

9
− 5

48
(1− Fy(pi+1))

]
+

[
pi|d|

6
+
p2
i

16

]
[Fy(pi+1 − 1)− Fy(pi)]

}

Rl(i, Q) can be maximized without impactingRu(i, Q) by setting Fy(pi−1) = 0. This means that

optimal Q should not assign any probability to y ≤ pi−1. Similarly, Ru(i, Q) can be maximized

by setting Fy(pi+1) = 1. This implies that optimal Q should assign all probability mass in the

range y ∈ {pi−1, pi+1}. In that case,

Rl(i, Q) =
c2
ER|d|2

2σ2R2

{
|d|2

[
1

9
− 5

48
(1− Fy(pi))

]
+

[
pi−1|d|

6
+
p2
i−1

16

]
Fy(pi)

}
Ru(i, Q) =

c2
ER|d|2

2σ2R2

{
|d|2 1

9
+

[
pi|d|

6
+
p2
i

16

]
[1− Fy(pi)]

}

Clearly, Rl(i, Q) is a linearly-increasing function of Fy(pi) and Ru(i, Q) is a linearly-decreasing

function of Fy(pi). Therefore to compute R̄(i); i.e max
Q

min{Rl(i, Q), Ru(i, Q)} one must com-

pute the value of Fy(pi) such that Rl(i, Q) = Ru(i, Q).

Denoting γ := 1− Fy(pi) and α :=
[
pi|d|

6
+

p2i
16

]
≈
[
pi−1|d|

6
+

p2i−1

16

]
, Rl(i, Q) = Ru(i, Q) we
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have,

− 5|d|2

48
γ + α(1− γ) = αγ

γ =
α

2α + 5|d|2
48

Substituting γ in Ru(i, Q), we get

R̄(i) =
c2
ER|d|2

2σ2R2

{
|d|2

9
+

α2

2α + 5|d|2
48

}

Since p� log2(p) = |d|, we have 2α + 5|d|2
48
≈ 2α, α ≈ p2i

16
. This leads to

R̄(i) ≈ c2
ER|d|2p2

i

32σ2R2
.
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[39] B. Köpf and M. Durmuth. A provably secure and efficient countermeasure against timing
attacks. In Computer Security Foundations Symposium, 2009. CSF ’09. 22nd IEEE, pages
324–335, July 2009. doi: 10.1109/CSF.2009.21. 1.1.2, 1.2
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