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Abstract

The motor system routinely generates a multitude of fast, accurate, and elegant movements.

In large part, this capacity is enabled by closed-loop feedback control systems in the brain.

Brain-machine interfaces (BMIs), which translate neural activity into control signals for driv-

ing prosthetic devices, also engage the brain’s feedback control systems and offer a promising

experimental paradigm for studying the neural basis of feedback motor control. Here, we address

both the engineering challenges facing current BMI systems and the basic science opportunities

afforded by them.

Previous studies have demonstrated reliable control of the direction of movement in cursor-

based BMI systems. However, control of movement speed has been notably deficient. We pro-

vide an explanation for these observed difficulties based on neurophysiological studies of arm

reaching. These findings inspired our design of a novel BMI decoding algorithm, the speed-

dampening Kalman filter (SDKF) that automatically slows the cursor upon detecting changes

in decoded movement direction. SDKF improved success rates by a factor of 1.7 relative to a

standard Kalman filter in a closed-loop BMI task requiring stable stops at targets.

Next, we transition toward leveraging the BMI paradigm for basic scientific studies of feed-

back motor control. It is widely believed that the brain employs internal models to describe our

prior beliefs about how an effector responds to motor commands. We developed a statistical

framework for extracting a subject’s internal model from neural population activity. We discov-

ered that a mismatch between the actual BMI and the subjects internal model of the BMI explains

roughly 65% of movement errors. We also show that this internal model mismatch limits move-

ment speed dynamic range and may contribute toward the aforementioned known difficulties in

control of BMI movement speed.
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Chapter 1

Introduction

The motor system routinely generates a multitude of fast, accurate, and elegant movements. In

large part, this capacity is enabled by closed-loop feedback control systems in the brain. These

systems continuously integrate multiple modalities of sensory information to form internal rep-

resentations of the dynamic state of the body. Task demands combine with these feedback-

mediated body representations to generate motor output from the brain. Although much is known

about how sensory information is encoded and how motor commands drive movements, rela-

tively little is known about how these sensory and motor systems coordinate to give rise to a

robust feedback control system.

It has been difficult to directly study the neurophysiology of feedback motor control due to

the massive numbers of neurons participating in control, the nonlinear dynamics in much of the

musculoskeletal system, the multiple contributing modalities of sensory feedback, and the lack of

an appropriate statistical framework for reconciling these complexities. Brain-machine interfaces

(BMIs) provide a simplified feedback control system, within which it becomes tractable to more

directly study the neural basis of closed-loop motor control. In particular, in a BMI, all neural

activity that directly drives the device is recorded, the dynamics of the device can be chosen by

the experimenter, and feedback can be limited to a single modality (e.g., vision). These features

of the BMI paradigm provide the experimenter with unprecedented access to the motor system

and facilitate novel studies of feedback motor control and motor learning.

Brain-machine interfaces (BMIs) have traditionally been developed for assisting disabled
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patients by translating neural activity into control signals for driving prosthetic devices, such as

a robotic limb or a computer cursor. In Chapter 2, we provide a literature survey of previous

work related to BMI systems and feedback motor control. We then present the contributions of

this dissertation, which address both the engineering challenges facing current BMI systems and

the basic science opportunities afforded by BMI systems. On the engineering side, we develop

solutions for understanding and advancing the performance of intracortical BMI systems. For

the purposes of basic neuroscience, we develop novel statistical tools and analyses of neural

population activity underlying feedback motor control.

The first contribution of this dissertation addresses a longstanding limitation to BMI perfor-

mance. The clinical viability of BMI systems depends critically on achievable performance.

While previous studies have demonstrated reliable control of the direction of movement in

cursor-based BMI systems, control of movement speed has been notably deficient. In Chap-

ter 3, we examine the motor cortical coding of movement speed in an effort to determine the

bottleneck underlying this deficiency in BMI speed control. We then develop a novel BMI de-

coding algorithm using a radical approach informed by our study of the motor cortical code.

Finally, we describe a series of closed-loop BMI experiments that I conducted to validate this

decoding algorithm.

Next, we transition toward leveraging the BMI paradigm for basic scientific studies of feed-

back motor control. During control of limb movements, the brain continuously takes in sensory

information about the limb, internally tracks the state of the limb, and produces appropriate mo-

tor commands. It is widely believed that this process is enabled by an internal model, which

describes our prior beliefs about how the limb responds to motor commands. We begin Chapter

4 with a validation of BMI as a paradigm for studying internal models by demonstrating that

BMI movements engage internal models, just as reaching movements do. With this evidence

that internal models underlie BMI control, we continue to extract a rich representation of an in-

ternal model. Most previous studies of internal models have been based upon low-dimensional

behavioral measurements or recordings from individual neurons. As such, it has been difficult to

identify a rich internal model that accounts for both observed behavior and neural activity. We

propose a novel statistical framework for extracting a subject’s internal model in unprecedented
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detail from high-dimensional neural population activity. Specifically, we consider the inverse

optimal control problem of learning a subject’s internal model from demonstrations of control

and knowledge of task goals. We develop a probabilistic framework and exact EM algorithm

to jointly estimate the subject’s internal model, the subject’s internal predictions about the BMI

cursor state, and the subject’s visual feedback delay. In the main results of Chapter 4, we harness

extracted internal models as a lens through which to interpret neural population activity.

Finally, in Chapter 5, we summarize the main contributions of this dissertation and propose

research directions that may be enabled by the contributions of this dissertation. The contribu-

tions of this dissertation have been published or submitted for publication as follows:

Chapter 3

Golub, M. D., Yu, B. M., Schwartz, A. B., and Chase, S. M. (2014). Motor cortical control of

movement speed with implications for brain-machine interface control. Journal of neurophysi-

ology, 11:(411-429).

Chapter 4

Golub, M. D., Yu, B. M., and Chase, S. M. (2012). Internal models engaged by brain-computer

interface control. In 34th International Conf. of the IEEE Engineering in Medicine and Biology

Society, pages 1327-1330.

Golub, M. D., Chase, S. M., and Yu, B. M. (2013). Learning an internal dynamics model from

control demonstration. In Proceedings of The 30th International Conference on Machine Learn-

ing, pages 606-614 (24% acceptance rate).

Golub M. D., Yu B. M., and Chase S. M. (2015). Internal models for interpreting neural popula-

tion activity during sensorimotor control. Under review.
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Appendix A

In addition to these contributions, Appendx A briefly describes a collaborative project that has

been published as follows:

Sadtler P. T., Quick K. M., Golub M. D., Chase S. M., Ryu S. I., Tyler-Kabara E. C., Yu B. M.,

and Batista A. P. (2014). Neural constraints on learning. Nature, 512:(423-426).
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Chapter 2

Previous work

2.1 Brain-machine interfaces

Brain-machine interfaces (BMIs) translate neural activity into control signals for driving pros-

thetic devices. In doing so, BMIs aim to restore the capacity for movement and communication

in patients with neurodegenerative diseases, spinal cord injuries, or limb amputations. A BMI

is composed of i) a system for recording neural activity from the brain, ii) a prosthetic device

to be controlled by the recorded neural activity, and iii) a decoder to map the recorded neural

activity into commands that drive the prosthetic device. In the following section, we provide a

brief literature survey for each of these components of the BMI system.

2.1.1 Neural recording systems

BMIs rely on extracting signals related to movement intent from the brain (Andersen et al., 2004;

Waldert et al., 2009). Neural activity can be monitored using a number of technologies, from

the minimally invasive functional magnetic resonance imaging (Lee et al., 2009), magnetoen-

cephalography (Georgopoulos et al., 2005), and electroencephalography (McFarland et al., 1997;

Millan et al., 2004), to the more-invasive electrocorticography (Schalk and Leuthardt, 2011) and

intracortical electrode recordings. Intracortical recordings made extracellularly can resolve neu-

ronal spiking activities with a high signal-to-noise ratio, and as such, this is the recording tech-

nology underlying state-of-the-art BMI systems. Olds (1965) and Fetz (1969) demonstrated the
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earliest proofs-of-concept that modulation of single neuron responses could be operantly condi-

tioned through rewards that were tied to feedback of neural firing. Current BMI systems rely

on volitional modulation of many neurons recorded simultaneously using chronically implanted

arrays of extracellular electrodes.

To extract movement-related signals, recording electrodes in BMI systems most often target

the primary motor cortex (M1). Activity in M1 has been shown to encode information about

many kinematic variables, including movement direction (Georgopoulos et al., 1982; Schwartz

et al., 1988; Ashe and Georgopoulos, 1994) and movement speed (Schwartz, 1992, 1994; Moran

and Schwartz, 1999b; Churchland et al., 2006). The parietal reach region (PRR) of posterior

parietal cortex and the dorsal premotor cortex (PMd) have been shown to encode high-level

movement goals (Batista et al., 1999; Messier and Kalaska, 2000). BMIs have also been demon-

strated based on recordings from these areas (Musallam et al., 2004; Santhanam et al., 2006).

The cerebellum and subcortical regions, such as the thalamus and the basal ganglia, also partici-

pate in the generation of movement (Alexander et al., 1986), but are more difficult to access and

thus are not typically considered for BMI applications.

2.1.2 Prosthetic devices

Intracortical BMIs have been designed to drive a range of prosthetic devices. In arguably the

earliest demonstration of a motor cortical BMI, Fetz (1969) conditioned monkeys to modulate the

activity of single neurons in the primary motor cortex (M1) by reinforcing particular firing rates

with food rewards and by providing feedback in the form of audible clicks or visual deflections

of a voltage meter. In this case, the prosthetic devices are the reward and feedback systems.

Prosthetic control of a robotic arm was introduced by Chapin et al. (1999), who trained rats

to drive movement of a simple robotic arm by modulating the activity of recorded neurons in M1

and ventrolateral thalamus. Wessberg et al. (2000) and Carmena et al. (2003) demonstrated that

monkeys could learn BMI control of robotic arms with 2-3 degrees-of-freedom (DOF). Velliste

et al. (2008) then demonstrated that monkeys could modulate neural activity to drive 4 DOFs of

a robotic arm in a self-feeding task involving interaction of the robot with both the food rewards

and the subjects themselves. Studies with human subjects have begun to translate progress from
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these rat and monkey studies into demonstrations of clinical viability of intracortical BMIs for

driving robotic limbs (Hochberg et al., 2006, 2012; Collinger et al., 2013).

In addition to driving robotic limbs, BMIs have been used to drive continuous movements

of computer cursors (Serruya et al., 2002; Taylor et al., 2002; Mulliken et al., 2008a; Suminski

et al., 2010; Gilja et al., 2012) and to select from a discrete set of targets (Musallam et al., 2004;

Santhanam et al., 2006). Functional electrical stimulation of intact limb muscles has also been

driven by a recent BMI in monkeys (Ethier et al., 2012). Progress has also been made toward

locomotion-based BMIs in studies of rats (Song et al., 2009) and monkeys (Fitzsimmons et al.,

2009).

2.1.3 Decoding algorithms

A decoding algorithm provides the critical link between the neural recordings and the prosthetic

device (Brockmeier and Prı́ncipe, 2013). Its purpose is to predict the intended state of the pros-

thetic device based on the available neural recordings. In the case of a prosthetic cursor, the

state typically includes the current cursor position, and may also include higher-order kinematic

derivatives (e.g., velocity, acceleration). In the case of a robotic arm, the state must include a

sufficient set of variables to specify the arm configuration. For discrete communications BMIs,

the state is an element from a pre-specified set (e.g., a letter on a keyboard or an icon from a

computer desktop). Decoding algorithms make different assumptions about how neural activity

relates to the intended state of the prosthesis, and these assumptions in turn specify the form and

parameterization of the prediction.

One approach to decoder design is to impose minimal assumptions about the neural activ-

ity and to directly learn a mapping from neural activity to prosthetic commands. Wiener filters

(WFs) (Carmena et al., 2003; Serruya et al., 2002) and artificial neural networks (Chapin et al.,

1999) fall into this category. An alternative approach is to assume that firing rates systematically

reflect specific parameters of a movement and can be described by an encoding or observation

model. Once fit, this model can then be mathematically inverted into a decoding model. A

prominent example is the cosine tuning model, which is inverted to define the population vector

algorithm (PVA) (Georgopoulos et al., 1982). Here, each neuron is modeled as firing maximally
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when movement is in a particular preferred direction, and firing rate decreases (following a co-

sine curve) as the angle increases between the direction of movement and the preferred direction.

When the recorded neurons’ preferred directions are not uniformly distributed, PVA leads to a

biased estimate of movement direction, which is compensated by instead using the optimal linear

estimator (OLE) to invert the tuning curves (Salinas and Abbott, 1994).

Movements tend to have statistical regularities, which are not reflected by the algorithms

described thus far. For example, movement velocity tends to change smoothly across time. This

notion can be captured by a probabilistic trajectory or state-transition model, describing how

the state is expected to evolve from one timestep to the next. When the trajectory model is

Markov (i.e., the current state depends only on the previous tilmestep’s state), and when both the

observation and trajectory models are linear-Gaussian, an optimal state estimate is given by the

Kalman filter (KF) (Kalman, 1960). Kalman filters have been used extensively in BMI systems

(Wu et al., 2006; Kim et al., 2008; Mulliken et al., 2008a; Gilja et al., 2012; Orsborn et al., 2014).

Collectively, the WF, PVA, OLE and KF are referred to as linear estimators because the estimated

movement state, or “decode,” can be expressed as a linear function of the neural activity and (in

the case of the KF) the previous estimates.

More sophisticated decoding algorithms are required when modeling assumptions include

nonlinear relationships or non-Gaussian noise. An example of a nonlinear observation model is

one that models the expected observed firing rate of a neuron using independent contributions

from both intended scalar speed and intended vector velocity (Li et al., 2009b). Because speed

is the magnitude (a nonlinear transformation) of velocity, no linear model can express such a

relationship. An important example of a non-Gaussian noise model is the Poisson noise model,

which is particularly well-suited for modeling spike counts because its support is the set of non-

negative integers (i.e., it models a distribution of counts) and because it models noise variance as

being tied to mean firing rate (i.e., matching empirical observations in recorded spiking activity).

A number of estimation algorithms have been developed to allow for decoding under these less-

restrictive modeling assumptions. The particle filter (Brockwell et al., 2004) uses a stochastic

sampling approach toward inferring a desired movement state, whereas the Laplace-Gaussian

filter (Koyama et al., 2010a) and unscented Kalman filter (Li et al., 2009a) perform inference
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using deterministic approximations. These filters are collectively referred to as nonlinear estima-

tors because their estimates cannot be expressed as linear functions. Although their underlying

model assumptions often better match the statistics of recorded neural and behavioral data, it is

not clear that they offer higher-performance relative to linear methods when incorporated into

closed-loop BMI systems (Koyama et al., 2010b).

2.1.4 Current limitations

Despite impressive advances in BMI technologies in recent years, BMI control of cursors and

robotic limbs is still inferior to able-bodied control of natural limbs and physical pointing devices,

especially with respect to the stability of stopping, as pointed out in previous studies (Carmena

et al., 2003; Hochberg et al., 2006; Kim et al., 2008; Ganguly and Carmena, 2009; Gilja et al.,

2012). One possible performance bottleneck might be that current BMI systems can only record

from relatively small populations of neurons. With access to larger populations, decoding algo-

rithms might better dissociate movement-related signals from noise. Another possibility is that

current decoding algorithms might not be maximally utilizing the available neural populations.

Most decoding algorithms solve some type of estimation problem. While an algorithm may be

optimal in the estimation sense (i.e., it may minimize error when reconstructing movements of-

fline), it might not be optimal for closed-loop control. Chase et al. (2009) showed that, despite the

fact that PVA is known to produce biased directional estimates, subjects are able to compensate

in a closed-loop setting such that, for each BMI cursor target, the direction of cursor movements

under the PVA appears nearly identical to the direction of movements decoded in closed-loop by

the unbiased OLE.

Several recent studies have begun to address the discrepancy between offline estimation and

closed-loop control. Gilja et al. (2012) designed a modified Kalman filter that incorporates the

assumption that the subject knows the current BMI cursor position (e.g., from available visual

feedback and possible use of an internal model), and that applies closed-loop decoder adapta-

tion under the assumption that the subject intends to drive the BMI cursor straight toward the

target from that cursor position. In a related study, Orsborn et al. (2014) showed that neural

adaptation can occur simultaneously with closed-loop decoder adaptation to yield improved task
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performance across days. It may be possible to further improve BMI performance by designing

systems that align synergistically with subjects’ abilities to adapt (Sadtler et al., 2014; Shenoy

and Carmena, 2014).

2.2 BMIs for investigating the neural basis of feedback motor

control

In addition to their promising clinical applications, BMIs offer a simplified and well-defined

feedback control system, which facilitates the study of the neural basis of feedback motor control.

In particular, the BMI system offers substantial simplifications to several key complexities of

native limb control. First, native limb control involves effectors with non-linear dynamics, and

the causal relationship between the recorded neural activity and limb movements is not fully

specified in the experiment. In contrast, the causal relationship between recorded neural activity

and BMI cursor movements is completely specified by the experimenter and can be chosen to

be linear. Second, native limb control involves multiple modalities of sensory feedback (e.g.,

proprioception and vision), which makes it difficult for the experimenter to know exactly what

information is known to the subject and at what time. In the BMI, task-relevant sensory feedback

is limited to a single modality (vision), and its content and timing are completely specified by

the experimenter. Finally, the neural activity that drives the BMI is completely specified by the

recorded population activity, whereas typically only a subset of neurons driving limb movements

is recorded.

These features of BMI systems have led experimenters toward adopting BMI as a paradigm

for exploring the neural substrates of feedback motor control. Early BMI studies, despite fo-

cusing on technological development, found that BMI control is a skill that improves with ex-

perience (Taylor et al., 2002; Carmena et al., 2003). Ganguly and Carmena (2009) designed a

study in which subjects controlled a BMI cursor across many days using a single decoder and

a stable population of recorded M1 cells. They found that patterns of neural activation became

increasingly stereotyped across days, suggesting that subjects had developed and refined an in-

ternal model of the BMI system. Ganguly et al. (2011) followed-up with a comparison between
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recorded cells that were directly linked to the BMI and other “indirect” cells that were simultane-

ously recorded, but did not directly contribute to BMI cursor movements. This analysis revealed

that firing rates of the indirect cells decreased their depths of modulation to cursor movements

relative to those of the direct cells, suggesting that, over many days, an internal model can be

learned for specific subpopulations of cells.

2.3 Internal models

A substantial portion of this dissertation is dedicated toward identifying and studying internal

models of the BMI. Here we provide a brief survey of the literature surrounding internal models.

An internal model can be defined loosely to be as a set of prior beliefs encoded in the brain

that mediates perception of sensory events or guides motor actions. Internal models have been

widely studied across a wide range of species, including electric fish (Requarth and Sawtell,

2014; Requarth et al., 2014; Kennedy et al., 2014), insects (Webb, 2004; Mischiati et al., 2015),

songbirds (Keller and Hahnloser, 2009), monkeys (Sommer and Wurtz, 2002; Komatsu, 2006;

Ghasia et al., 2008; Mulliken et al., 2008b; Laurens et al., 2013), and humans (Wolpert et al.,

1995; Komatsu, 2006; Shadmehr and Krakauer, 2008; Shadmehr et al., 2010). These studies

address internal models across multiple sensory systems, including electrosensory (Requarth

and Sawtell, 2014; Requarth et al., 2014; Kennedy et al., 2014), visual (Komatsu, 2006; Berkes

et al., 2011), and vestibular (Laurens et al., 2013) systems, and across multiple motor systems,

including flight (Mischiati et al., 2015), vocalization (Keller and Hahnloser, 2009), oculomotor

(Sommer and Wurtz, 2002; Green et al., 2007; Ghasia et al., 2008) and skeletomotor (Shadmehr

and Mussa-Ivaldi, 1994; Wolpert et al., 1995; Mulliken et al., 2008b; Shadmehr and Krakauer,

2008) systems.

In the motor system, an internal forward model contains those prior beliefs necessary for pre-

dicting the sensory consequences of a motor command (Jordan and Rumelhart, 1992; Wolpert

et al., 1995; Miall and Wolpert, 1996; Desmurget and Grafton, 2000; Mehta and Schaal, 2002;

Frens and Donchin, 2009). In an arm reaching context, a forward model could predict the up-

coming arm configuration given the previous arm configuration and internal copies of recently
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issued motor commands. An internal inverse model is typically defined as a mapping from a de-

sired movement into a motor command (or sequence of motor commands) that would implement

the desired movement (Kawato et al., 1987; Wolpert and Kawato, 1998; Mussa-Ivaldi and Bizzi,

2000; Sabes, 2000). Both types of motor internal models incorporate one’s inner conceptions

about the physics of the effector and how neural commands drive movements of the effector. For

successful motor control, the forward and inverse models should be well-tuned to each other and

to the effector being controlled.

Why do we need internal models? Even simple movements, like reaching to grasp a glass

of water, require dozens of muscles to be activated with precise coordination. This precision

is especially impressive in light of sensory feedback delays inherent to neural transmission and

processing: when we make a swift arm movement, the brain only knows where the arm was a split

second ago, not where it currently is. The latency between visual stimuli and neural responses

in M1 is on the order of 100 ms in primates (Schwartz et al., 1988). For rapid online error

correction, a forward model is essential in that it enables an internal prediction of the current

effector state before the corresponding sensory feedback becomes available, thus facilitating

compensation for sensorimotor delays. From a computational standpoint, it should be noted

that these internal state predictions need not be explicitly computed to produce output motor

commands that compensate for system delays. Rather, compensatory motor commands could be

directly computed from sensory feedback and internal copies of previous motor commands.

2.3.1 Psychophysical studies of motor internal models

Much evidence supporting the brain’s use of internal models comes from human psychophysi-

cal studies demonstrating behavioral correlates of internal models. Wolpert et al. (1995) asked

subjects to estimate the endpoint of perturbed and visually obscured hand movements. They

found that localization errors were well-described by a framework that incorporated both pro-

prioceptive sensory inflow as well as internal state estimation via an internal forward model

that integrates motor outflow. Shadmehr and Mussa-Ivaldi (1994) showed that, when arm move-

ments are perturbed by a viscous force field, subjects adapt with experience until arm movements

appear nearly identical to those prior to the perturbation. When the perturbation was removed,
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aftereffects in the arm movements indicated that compensation for the perturbation was mediated

by an adaptive and persistent internal model, rather than by compensatory increases in muscle

stiffness. Thoroughman and Shadmehr (2000) further investigated adaptation to viscous force

fields in arm reaching movements and found that removal of the force field for just a single trial

resulted in predictable “unlearning” in subjects’ internal models.

The cerebellum is believed to subserve computations of an internal forward model for mo-

tor control. Behavioral evidence comes from cerebellar patients who present reaching deficits

consistent with an inability to internally predict the outcome of motor commands and thus to

compensate for sensory feedback delays (Shadmehr and Krakauer, 2008; Bhanpuri et al., 2013).

In healthy subjects, Miall et al. (2007) applied transcranial magnetic stimulation to the cere-

bellum during sequential arm reaches and found that movements became biased in a manner

consistent with a disrupted ability to internally track the arm.

2.3.2 Mechanistic studies of motor internal models

In parallel to these psychophysical studies, mechanistic studies have made important progress

toward identifying the neural circuits that implement internal models. As a motor command is

issued from the brain to the muscles, it is believed than an internal copy of the command, often

referred to as efference copy or corollary discharge, is sent in parallel to an internal forward

model, which predicts the command’s sensory consequences. Sommer and Wurtz (2002) identi-

fied this internal copy pathway in the macaque saccadic eye movement system, in a relay from

the superior colliculus to the frontal eye field through mediodorsal thalamus. When the thalamic

relay was reversibly inactivated, sequential eye movements exhibited biases consistent with an

inability to internally track the initial eye movement in the sequence (similar to the behavioral

effect reported by Miall et al. (2007)). Also studying macaque eye movements, Ghasia et al.

(2008) suggested that eye-head (EH) neurons in the brainstem carry a forward prediction signal,

and nearby burst tonic (BT) cells carry an internal copy of the eye movement command. The crit-

ical distinction was that EH cells represented the torsional component of eye movements, which

is a consequence of the mechanics of the extraocular muscles and is not directly driven by ocular

motor neurons. BT cells represented eye motion, but not its torsional component. For reach-
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ing movements, recent evidence suggests that cervical propriospinal neurons (CPNs) may carry

the analogous internal copy command. This class of neurons carries projections downstream to

motor neurons that innervate forelimb muscles and upstream to the cerebellum via the lateral

reticular nucleus (LRN) (Alstermark and Ekerot, 2013). Azim et al. (2014) found that reach-

ing was impaired in mice when optical stimulation disrupted the internally directed upstream

pathway from CPNs to LRN.

2.3.3 Further neural correlates of motor internal models

In addition to these mechanistic studies, which largely focus on the inputs to a forward model, a

limited number of studies have taken the complementary approach of investigating neurophysio-

logical links between behavior and putative outputs of an internal model. Mulliken et al. (2008a)

found that individual neurons in posterial parietal cortex represented movements of a joystick,

but at lags too soon to represent motor outflow but too late to represent sensory inflow. They

claimed that these neurons represented the internal predictions of a forward model. Gribble and

Scott (2002) studied monkeys making reaching movements with external loads introduced at var-

ious positions on the arm. From recordings of individual neurons in M1, they found that neural

activity from multiple-load movements could be predicted from neural activity during move-

ments with each individual load, suggesting that internal models subserving simple movements

can be combined to form a basis for driving complex movements.

2.3.4 Internal models beyond the motor system

Although we have focused on reviewing the literature surrounding internal models for the motor

system, much related work has been done in identifying internal models across various sensory

systems. Rather than guiding movement, these internal models drive perception by integrating

sensory stimuli with prior beliefs about the statistics of sensory events. In the vestibular sys-

tem, cerebellar Purkinje cells have been shown to resolve ambiguities in bodily accelerations

(Green et al., 2005; Laurens et al., 2013). In the visual system, internal models are believed to

subserve perceptual filling-in (Komatsu, 2006). During development, internal models driving
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visual cortical activity are believed to adapt to the statistical properties of the visual environment

(Berkes et al., 2011). In the electrosensory system of weakly electric fish, internal models have

been shown to compensate for self-induced electric fields (Requarth and Sawtell, 2014; Requarth

et al., 2014; Kennedy et al., 2014). In the mouse auditory system, internal models are believed to

inform auditory-guided behaviors by driving movement-related modulation of auditory process-

ing (Schneider et al., 2014).
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Chapter 3

Motor cortical control of movement speed

with implications for brain-machine

interface control

3.1 Motivation

Previous studies have investigated the extent to which motor cortex encodes kinematic vari-

ables, including movement direction (Georgopoulos et al., 1982; Schwartz et al., 1988; Ashe and

Georgopoulos, 1994) and movement speed (Schwartz, 1992, 1994; Moran and Schwartz, 1999b;

Churchland et al., 2006). The ability to accurately read out direction and speed from motor cortex

takes particular importance in the context of brain-machine interfaces (BMIs), which translate

neural activity into control signals for driving prosthetic devices, such as robotic limbs (Chapin

et al., 1999; Wessberg et al., 2000; Carmena et al., 2003; Velliste et al., 2008) or computer cur-

sors (Serruya et al., 2002; Taylor et al., 2002; Mulliken et al., 2008a; Suminski et al., 2010; Gilja

et al., 2012). Despite impressive advances in BMI technologies in recent years, BMI control of

cursors and robotic limbs is still inferior to able-bodied control of natural limbs and physical

pointing devices, especially with respect to the stability of stopping, as pointed out in previous

studies (Carmena et al., 2003; Hochberg et al., 2006; Kim et al., 2008; Ganguly and Carmena,

2009; Gilja et al., 2012). To better understand the origin of this poor control of BMI movement
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speed, we looked for signatures of a robust representation of instantaneous movement speed in

single-trial reaching movements.

We analyzed spike trains recorded simultaneously across primary and premotor cortices

of rhesus monkeys during a 3D center-out reaching task. Using standard information theo-

retic and population decoding techniques, we found substantially less speed-related informa-

tion than direction-related information in neural activity at the levels of both single units and

simultaneously-recorded populations. We also performed a unit-dropping analysis, which sug-

gests that our ability to decode movement speed might not improve substantially with access to

larger numbers of neurons. None of our analyses revealed a substantial representation of the

moment-by-moment details of movement speed on single-trial bases.

The finding that speed information is difficult to extract from motor cortical population ac-

tivity informed a novel approach to implementing movement speed when driving BMI devices.

This decoder, termed the speed-dampening Kalman filter (SDKF), incorporates the assumption

that movement speed and angular velocity should be inversely related. Rather than relying on

neural activity to provide the complete details of movement speed, which may be difficult to

extract in the real-time setting of BMI, SDKF enhances control of movement speed using direc-

tional signals, which are more easily extracted from neural activity. Since movement direction

can be reliably inferred from motor cortical population responses, angular velocity (the temporal

derivative of direction) can be extracted reliably as well. SDKF uses angular velocity of the de-

coded cursor trajectory to modulate cursor speed, thus reducing the system’s reliance on cortical

activity to directly provide the moment-by-moment details of movement speed.

3.2 Results

3.2.1 Single-unit activity carries more information about direction than

about speed

To characterize the speed-related and direction-related information carried by spike trains from

individual neural units, we computed the mutual information between neural activity and move-
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ment kinematics. Mutual information is a statistic describing the extent of dependence between

two random variables. In contrast to correlation coefficients determined from linear regression,

mutual information does not require specifying a form for the relationship between two variables,

allowing it to capture arbitrary nonlinear relationships if they are indeed present in the data.

Movement speed and direction are continuous-valued quantities expressed using different

units and numbers of degrees-of-freedom. To enable an unbiased comparison of the relationships

between neural activity and these two kinematic quantities, we discretized movement speed and

direction such that their statistical properties were matched (see Section 3.4.2).

For each unit we determined the lag at which mutual information was maximized between

spike counts and lagged discretized direction, τdirection, and lagged discretized speed, τspeed,

where positive lags correspond to causal relationships between neural activity and movement

kinematics. Henceforth we refer to the mutual information at these optimal lags as maximal

direction information (MDI) and maximal speed information (MSI).

Spike trains from single units contained speed- and direction-related information in a variety

of forms. Figure 3.1 shows speed and direction information as a function of lag for a number of

representative units. Direction information curves were unimodal for nearly every recorded unit,

whereas it was not uncommon for speed information curves to be bimodal. These bimodal speed

information curves are likely a reflection of task-induced autocorrelation in movement speed

(e.g., through bell-shaped speed profiles). Most units’ maximal direction information (MDI) and

maximal speed information (MSI) were significant relative to null information levels, although

some units were exceptions, as detailed in Table 3.1. The number of units with significant MDI

was larger than the number of units with significant MSI for all 9 experiments.

Figure 3.2 shows the lags at which each unit achieved its MDI and MSI. Optimal lags for

direction information were most often causal, meaning information-carrying spikes tended to

lead movement direction. Optimal lags for speed-related information were casual and acausal in

roughly equal frequencies. Many units thus had substantial discrepancies between their optimal

direction and speed lags, and, on average, optimal direction lags were more positive (i.e., causal)

than optimal speed lags within individual units.

Perhaps most striking, however, were the differences between MDI and MSI values within
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Figure 3.1: Information curves for 40 representative units from a single experiment (F081909).

Mutual information between spike counts and movement direction (blue) or movement speed

(red) was computed as a function of time lag between neural activity and kinematics. Triangles

indicate lags at which maximal direction information (MDI) and maximal speed information

(MSI) were achieved and were omitted if those information values were not significantly greater

than expected by chance (permutation test, p < 0.001). For positive lags, neural activity led

kinematics in the information calculation. Shaded regions represent 95% confidence intervals

(bootstrap). At top right of each panel, ** denotes MDI>MSI (blue) or MSI>MDI (red) (boot-

strap, p < 0.001).
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Dataset speed and direction direction only speed only neither total units

F081309 99 (83) 10 (8) 5 (4) 5 (4) 119

F081709 98 (82) 10 (8) 6 (5) 5 (4) 119

F081809 95 (80) 11 (9) 5 (4) 8 (7) 119

F081909 95 (80) 14 (12) 8 (7) 2 (2) 119

T110410 43 (66) 10 (15) 1 (2) 11 (17) 65

T110510 53 (69) 15 (19) 1 (1) 8 (10) 77

T110910 50 (61) 18 (22) 3 (4) 11 (13) 82

T111010 38 (58) 16 (24) 1 (2) 11 (17) 66

T111210 34 (69) 5 (10) 4 (8) 6 (12) 49

Table 3.1: Numbers of units with significant maximal direction information (MDI) and speed

information (MSI) across all recorded units from each experiment. Percentages of total units are

given in parentheses.

individual units. Of 119 units from a representative dataset (F081809), 45 (38%) had MDI values

that were significantly greater than their MSI values, while only 12 (10%) showed the opposite

relation (Fig. 3.3A). Consistent with this breakdown, we found significantly more direction-

related information than speed-related information on average across all recorded units with

significant differences in MDI and MSI from this dataset (Fig. 3.3B). This breakdown of unit-

types was consistent across datasets from both subjects, with 3.01±0.63 times as many direction-

dominated cells as speed-dominated cells (see Table 3.2). For all Monkey F datasets, average

MDI was significantly greater than average MSI (p < 0.001, right-tailed t-test). For Monkey T

datasets, average MDI was always greater than average MSI, but due to lower unit counts, these

differences were statistically significant for only 3 of 5 datasets (p < 0.05, right-tailed t-test).

To aid in interpreting this uneven breakdown of direction- versus speed-encoding units, we

simulated spike counts from four relevant encoding models: direction-only; speed-only; veloc-

ity (i.e., ); and independent speed and direction. We fit each model to the neural activity and

raw movement kinematics (non-discretized) from the representative dataset (F081909) and then

simulated spike counts using the same real kinematics. As expected, when simulating from the

direction-only encoding model, no units were identified with MSI significantly greater than MDI

(Fig. 3.4A), and similarly, when simulating from the speed-only encoding model, no units were

identified with MDI significantly greater than MSI (Fig. 3.4B). The information pattern from the

velocity-encoding population (Fig. 3.4C) resembled that from the direction-only population, but
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since speed is a fundamental component of velocity, MSI values were slightly larger in the veloc-

ity encoding population. Even so, none of these simulated units had an MSI that was significantly

larger than its corresponding MDI.

The information signature from the simulated speed-and-direction encoding population (Fig. 3.4D)

best resembled that of the real data (Fig. 3.3A), with a large number of units with significantly

greater MDI than MSI in addition to a small number of units showing the opposite trend. This

similar breakdown of direction- versus speed-dominated units should be expected since the data

were generated from a model fit to the real data. The direction-only, speed-only and velocity

encoding models result in theoretically prescribed distributions of MDI and MSI values. This
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Figure 3.2: Information maximizing lags for speed and direction from a representative dataset

(F081909). Positive lags correspond to neural activity leading kinematics (i.e., causal). Fre-

quency histograms of optimal lags for speed and direction are shown in top and right panels,

respectively. Units were omitted if either their speed or direction information was not statisti-

cally significant.
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Figure 3.3: MDI and MSI for a representative dataset (F081909). (A) Within-unit MDI vs MSI.

Units with significantly different MDI and MSI values (bootstrap, p < 0.001) are shown in blue

(MDI greater) and red (MSI greater). Units with no significant difference between MDI and

MSI are shown in black. (B) Frequency histogram of within-unit differences between MDI and

MSI for units with significantly different MDI and MSI (i.e., excluding units from (A) denoted

in black). On average (dashed line), MDI was significantly larger than MSI (p = 5.2 × 10−6,

one-sided t-test).

Dataset MDI > MSI MSI > MDI total units

F081309 41 (34) 11 (9) 119

F081709 40 (34) 13 (11) 119

F081809 40 (34) 15 (13) 119

F081909 45 (38) 12 (10) 119

T110410 15 (23) 7 (11) 65

T110510 26 (34) 7 (9) 77

T110910 29 (35) 9 (11) 82

T111010 25 (38) 9 (14) 66

T111210 12 (24) 6 (12) 49

Table 3.2: Frequencies of units with significantly greater MDI than MSI and vice versa (p <
0.001, bootstrap). Percentages of total units are given in parenthesis.

distribution for the independent speed and direction model, however, can favor either direction

or speed unit types, depending on the data. Also, note that the distributions of MDI and MSI

values from these simulations are biased toward slightly smaller values than those from the real

data in Fig. 3.3A. These differences speak to the fact that the real neural activity contains move-

ment information not captured by the parametric tuning models used in these simulations (as
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Figure 3.4: Within-unit MDI vs MSI for datasets simulated from (A) direction-only, (B) speed-

only, (C) velocity, and (D) independent speed and direction encoding models. Same format and

scale as Fig. 3.3A.

observeded, for example, by Churchland and Shenoy (2007)), yet this information is captured by

the mutual information computations employed over the real neural data in this analysis.

To establish a link between this information analysis motor cortical tuning, we also performed

a linear regression analysis (Georgopoulos et al., 1982; Schwartz, 1992; Ashe and Georgopoulos,

1994; Lebedev et al., 2005; Perel et al., 2013). We fit regression models that assumed recorded

spike counts encoded kinematics through direction-only tuning, speed-only tuning, or velocity

tuning. Tuning indices (TI), defined as
√
R2 from fits to these regression models, are shown

in Fig. 3.5 as a function of lag between kinematics and neural activity. Direction TI curves

closely matched the direction information curves of Fig. 3.1, and similarly speed TI curves
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closely matched the speed information curves. Velocity TI curves typically had maxima that

exceeded both the corresponding speed and direction TI maxima (although a few exceptions can

be found). These velocity TI curves were more closely matched to the TI and information curves

of direction than of speed, but did not appear to be a simple function of one or the other. We

note that TI values for direction and velocity are not directly comparable to those for speed due

to differences in numbers of parameters between models and because TI values were computed

over the same data used to fit the models. Rather, this analysis was motivated to 1) help carry

over intuition from previous studies framed from a regression perspective, and 2) to demon-

strate that the appearance of velocity tuning does not necessarily predict the quantity of speed-

or direction-related information that may be extracted from a population.

3.2.2 Population activity enables better predictions of direction than of

speed

Results from the information analysis suggests that, at least in single-unit activity, the encod-

ing of movement speed is substantially weaker than that of movement direction. To determine

whether this finding holds true when considering the joint population activity, we applied a series

of Poisson naı̈ve Bayes classifiers toward predicting kinematics from simultaneously recorded

population responses. Classifiers were trained to predict discretized kinematics based on (i) a

single 30 ms spike count aligned in time with movement kinematics (instantaneous), or (ii) the

entire causal history of non-overlapping 30 ms spike counts beginning 300 ms before the move-

ment kinematics (history). Direction predictions were significantly more accurate than speed

predictions under both the instantaneous and history conditions and across all datasets. For the

representative dataset detailed in previous sections (F081909), instantaneous direction accuracy

was 26.0%, while speed accuracy was only 9.8%, as shown in Figs. 3.6A and 3.6G. Incorporat-

ing spike count history into predictions for this dataset increased direction accuracy to 38.7%,

while speed accuracy only increased to 13.1%. While these prediction accuracies may seem low

on an absolute scale, they are actually relatively high given that predictors had to choose from

26 possible labels for both speed and direction, and as such, chance prediction accuracy was

only 3.8%. These trends were consistent across all datasets, with direction accuracy 2.34± 0.25
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Figure 3.5: Linear regression analysis of the same 40 units from Fig. 3.1. Tuning indices, de-

fined as
√
R2 from linear regressions, are shown for direction-only (blue), speed-only (red) and

velocity (black) tuning models (Eqs. 3.10, 3.11, and 3.12, respectively).

times higher than speed accuracy for instantaneous predictions and 2.80± 0.23 times higher for

predictions based on spike count history. Prediction accuracies for all datasets are tabulated in

Table 3.3.

To summarize the full distribution of predictions, we also computed mutual information be-

tween predicted and actual discretized kinematics. As shown in Figs. 3.6B and 3.6H, direction

predictions carried more information than did speed predictions. As a performance metric, infor-

mation complements prediction accuracy in that information provides a summary of the structure

of predictions, including both the predictions that matched the actual kinematics as well as those
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Figure 3.6: Evaluation of PNB predictions on dataset F081909. (A)-(F) evaluate predictions

based on a single 30 ms spike count aligned in time with kinematics. (A) Prediction accuracy.

Error bars indicate 95% confidence intervals (Bernoulli process, ** denotes p < 0.001), and

dashed line indicates chance prediction accuracy. (B) Information between predicted and ac-

tual kinematics labels. Dashed lines indicate null information computed as mean information

between actual labels and 200 shuffled sets of actual labels. (C)-(D) Confusion matrices for di-

rection and speed predictions, respectively. The jth column gives the distribution of predicted

kinematics given that the actual kinematics had label j. Each column is normalized to sum to

100%. (E)-(F) Confusion matrices from (C)-(D) with the rows of each column sorted by angle

(direction) or absolute difference (speed) between kinematics corresponding to actual and pre-

dicted labels. Correct predictions are shown along the diagonal in (C)-(D) and as the top row in

(E)-(F). (G)-(L) evaluate predictions based on causal history of spike counts in the same format

as (A)-(F).

that did not. Specifically, if two sets of predictions have the same fraction of correct predictions,

information will be higher for the set whose incorrect predictions are less uniformly distributed

across labels. In this regard, information can appropriately account for near misses, for example,

if a classifier frequently predicts an incorrect label corresponding to a speed that is only slightly
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Instantaneous History

Monkey Dataset # units
Dir. acc. Speed acc. Dir. acc.

Speed acc.

Dir. acc. Speed acc. Dir. acc.
Speed acc.(%) (%) (%) (%)

F 081309 119 26.3 10.5 2.5 38.8 11.4 3.4

F 081709 119 25.8 9.2 2.8 35.8 11.5 3.1

F 081809 119 24.9 9.3 2.7 36.0 12.8 2.8

F 081909 119 26.0 9.8 2.7 38.7 13.1 3.0

T 110410 65 17.3 7.5 2.3 29.8 10.0 3.0

T 110510 77 17.1 6.8 2.5 28.0 11.0 2.5

T 110910 82 17.2 6.8 2.5 29.2 10.7 2.7

T 111010 66 15.2 7.1 2.1 27.4 9.8 2.8

T 111210 49 13.2 7.0 1.9 24.8 10.1 2.5

Table 3.3: PNB classification accuracies for speed and direction across all datasets. Instantaneous

predictions are based on 30 ms spike counts time-aligned with kinematics. History predictions

are based on a 300 ms causal history of spike counts in non-overlapping 30 ms bins. Chance

prediction accuracy is 3.8% for instantaneous and history predictions of both speed and direction.

higher than the speed corresponding to the true label.

Confusion matrices are shown in Fig. 3.6c,d and Fig. 3.6i,j. While adjacent speed labels

correspond to adjacent speed ranges, no such natural ordering exists for three-dimensional di-

rections. To compensate, we provide column-reordered confusion matrices in Fig. 3.6e,f and

Fig. 3.6k,l, whereby the rows in each column have been sorted by angle (direction) or absolute

difference (speed) between kinematics corresponding to actual and predicted labels. The confu-

sion matrices show that incorrect prediction labels typically clustered around the correct label for

both speed and direction. These distributions were tighter for direction than for speed, resulting

in greater information values for direction than for speed.

We chose to include causal neural activity as the input to classifiers to mimic the real-time

prediction problem that a BMI is required to solve. However, the information analysis revealed

maximal speed information at acausal lags for many units (Fig. 3.2). When repeating the decod-

ing analysis using both the causal and acausal histories of neural activity, we found prediction

accuracies were largely unchanged as compared to the corresponding accuracies using only ca-

sual neural activity.

To ensure that our discretization procedure is not responsible for these discrepancies between

direction and speed prediction accuracies, we analyzed speed prediction accuracies as a function
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of speed bin widths used for discretization. For predictions based on instantaneous spike counts,

there was never a significant effect of bin width on prediction accuracy. For predictions based

on spike count history, bin width had a small, but significant effect on 2 of 9 analyzed datasets;

however, these 2 experiments had low unit counts relative to the other experiments.

To determine the effect of population size on prediction accuracy, we performed a unit-

dropping analysis. As expected, predictions become more accurate with increased population

size for both movement speed and movement direction (Fig. 3.7A). We note that the confidence

intervals in the latter portion of the neuron-dropping curves (i.e., for numbers of units approach-

ing the actual recorded population size) will be biased to be smaller than they actually are due

to the similarity across draws from the actual population. However, even when accounting for

this, extrapolation of these accuracy curves beyond the numbers of units we recorded suggests

that, had we recorded a larger sample of neurons, speed prediction accuracy would likely remain

substantially lower than that of direction predictions (data not shown).

We also computed PNB prediction accuracy as a function of the number of contributing units

for simulated population recordings (Figs. 3.7B–3.7E). Consistent with the single-unit informa-

tion analyses, the independent speed and direction encoding model resulted in a population with

PNB prediction accuracies best matched to those of the real data. The key corresponding fea-

tures are (i) the ratio of direction-to-speed prediction accuracy across population size, and (ii)

the nearly saturated speed prediction accuracy when all units are incorporated into predictions.

However, this simulated population gives systematically lower prediction accuracies for both

speed and direction relative to those given by the real recorded data. This discrepancy again

speaks to the fact that the real recorded neural data contains movement information not captured

by the parametric tuning models used for these simulations, and that PNB classifiers are capable

of extracting this information from neural activity.

As described, the information and prediction analyses have treated speed and direction sep-

arately, characterizing each kinematic variable’s relationship to neural activity independent of

the other variable. We also performed the prediction analysis using a joint discretization scheme

whereby classifiers were trained to jointly predict speed and direction from each of 262 possible

pairs of discretized speeds and directions. Because these classifiers required learning many more
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Figure 3.7: PNB prediction accuracy for speed (red) and direction (blue) as a function of the

number of units contributing to predictions. For the 119-unit case, there is only one unique

combination of all 119 units. For the one-unit and 118-unit case, there are 119 unique unit

combinations. In these cases, prediction accuracies were computed for all possible unit combi-

nations. For each intermediate number of units, 1000 randomly selected unit combinations were

assessed. Colored lines and shaded regions represent median accuracies and 95% of accuracies

thereabout, respectively. Black lines indicate chance prediction accuracies. (A) Real data from

experiment F081909. (B) Simulated data from the direction-only encoding model. (C) Simulated

data, speed-only model. (D) Simulated data, velocity model. (E) Simulated data, independent

speed and direction model.

parameters, some datasets were not large enough to support the analysis. For the datasets that

were large enough, marginal prediction accuracies for direction were again significantly greater

than those for speed, although overfitting of the increased numbers of parameters produced abso-

lute accuracies that were slightly lower than those reported in our main results (data not shown).

To mitigate overfitting, we restricted the analysis to in-plane trials and decreased the number

of speed and direction bins to 8 each. This joint decoding analysis was well defined for all

datasets and produced similar results to an analogous analysis where speed and direction were
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each decoded independently (data not shown).

3.2.3 Difficulties extracting speed may explain deficiencies in BMI control

Previous BMI studies have noted subjects’ difficulties in controlling BMI cursor speeds, espe-

cially with respect to stopping and holding a cursor at a desired target location (Carmena et al.,

2003; Hochberg et al., 2006; Kim et al., 2008; Ganguly and Carmena, 2009; Gilja et al., 2012).

To align with these studies, we implemented a BMI cursor control task using a velocity-only

Kalman filter (VKF), a state-of-the-art neural decoder for BMI applications. Example cursor

trajectories under VKF are shown in Fig. 3.8, as well as in Suppl. Video 1. During experimental

sessions when all trials had minimal target hold requirements (50 ms), cursor trajectories were

swift and straight into the targets (Fig. 3.8A). To quantify the subject’s ability to crisply stop at

targets, we introduced substantial hold requirements, such that trial success required the cursor

to overlap the target for a randomized hold time (0-600 ms), and a trial was failed if the cur-

sor exited this acceptance region during the hold time. During these experimental sessions with

substantial target hold requirements, the subject demonstrated poor control of movement speed

under VKF, as evidenced by frequent trial failures due to overshooting through the target (Suppl.

Video 1). Successful trials often involved meandering trajectories (Fig. 3.8B), such that cursor

speed was relatively low upon initial acquisition of the target. When target hold requirements

were minimal, this meandering behavior was not observed, and cursor speeds were substantially

higher upon target acquisition (Fig. 3.9), suggesting that the subject adopted a VKF-specific

strategy whereby stable stops were replaced by slow movements over the target. Consistent with

this strategy, the subject’s performance under VKF decreased substantially as target hold time

requirements increased (Fig. 3.11A).

We have shown that (i) in single-trial arm reaches, speed information is relatively deficient in

motor cortical activity compared to the abundant levels of direction information, and (ii) motor

cortical activity alone cannot support precise control of BMI cursor stability under VKF. Several

studies have highlighted the differences between closed-loop BMI control and offline analyses

of arm control (Lebedev et al., 2005; Chase et al., 2009). To establish a link between the ap-

parent deficiency of speed information offline and deficient speed control online, we simulated
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Figure 3.8: Example BMI cursor trajectories from successful trials. Dark circles show target

sizes as displayed during experiments. Light circles denote cursor-target overlap zones that take

into account the cursor radius (not shown). (A) VKF control with minimal target hold require-

ments (dataset F072310). (B) VKF control with target hold requirements between 300-600 ms

(dataset F062810). (C) SDKF control with target hold requirements between 300-600 ms (dataset

F062810).
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Figure 3.9: Cursor speed under VKF control as a function of distance to target center when target

hold requirements were 50 ms (dashed gray line) and during separate sessions when target hold

requirements were 300-600 ms (solid gray line). Target acquisition began 14 mm from target

center (dashed black line). Data shown for successful trials only.

closed-loop BMI control as decoded by VKF. The underlying simulated neural population had

log-linear tuning to the independent speed and direction model (Eq. 3.8), which was fit to real

recorded neural activity from the arm reaching experiments. Thus the simulated population en-

coded substantially more information about desired direction than about desired speed. As shown

in Fig. 3.10, simulated control was consistent with the real VKF BMI behavioral data in that suc-
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Figure 3.10: Success rate as a function of target hold requirement for real BMI experiments

under VKF control (solid line) and for simulated BMI control (dashed line). Error bars indicate

95% confidence intervals (Bernoulli process).

cess rates decreased rapidly as target hold requirements increased. This result suggests that the

amount of speed information found during arm movements is consistent with the subject’s de-

ficient ability to hold at targets, and further, that the amount of speed information required for

stable stopping under VKF BMI control exceeds the amounts that we found in recorded motor

cortical activity.

3.2.4 SDKF restores stopping ability during closed-loop BMI control

From the information and prediction analyses, we found our ability to extract speed-related infor-

mation from motor cortical activity to be relatively poor, despite using methods that require only

mild assumptions about how movement speed might be encoded in neural activity. The resulting

implication for BMI is that, even if it were possible to perfectly extract the limited speed infor-

mation available in recorded neural activity, this may never enable reliable closed-loop control

of BMI cursor speed because the encoding for movement speed is simply not that strong.

We designed the speed-dampening Kalman filter (SDKF) to overcome this limitation in the

decodability of movement speed. SDKF leverages the subject’s reliable control of movement

direction to improve control of movement speed by implementing a tradeoff between speed and

angular velocity in the decoded velocity signal. When cursor trajectories exhibit large absolute

angular velocities, SDKF constrains decoded speeds to be closer to zero in a graded fashion

depending on the magnitude of the angular velocity. In this manner, straight movements can be

fast, and curved or corrective movements can be used to slow the cursor.
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Figure 3.11: Comparison of BMI control under SDKF (black) and VKF (gray). (A) Success

rate as a function of target hold requirement for all trials where an initial target acquisition was

achieved. VKF data are replicated from Fig. 3.10. Trials were deemed failures and terminated if

the cursor exited the target region before the hold requirement was satisfied. Error bars indicate

95% confidence intervals (Bernoulli process; ** denotes p < 0.001; * denotes p < 0.01). (B)

Movement times, defined as the elapsed time between target onset and initiating the target hold

period, as a function of target hold requirement for all successful trials. Error bars denote ± one

standard error (* denotes p < 0.01, Wilcoxon test).

Example cursor trajectories under SDKF are shown in Fig. 3.8C, as well as in Suppl. Video 2.

SDKF significantly enhanced the subject’s ability to stop and hold for the duration of target hold

requirements, as shown in Fig. 3.11A. For target hold times between 300-600 ms, success rates

were 1.7 times higher under SDKF control than under VKF control. Cursor movements under

SDKF were typically straight toward the target, rather than meandering (Fig. 3.8), indicating that

the subject could instruct a crisp stop upon acquiring the target. We applied a constant speed

gain to decoded SDKF velocities such that movement times were matched between VKF and

SDKF trials (Fig. 3.11B). In this setting, SDKF achieved improved cursor stability at targets

with movement times that were not significantly different from VKF movement times for hold

requirements longer than 100 ms (for hold requirements under 100 ms, movements did not need

to slow down substantially at targets to achieve task success).

SDKF improves BMI performance by leveraging natural features of goal-directed move-
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ments, as well as by potentially encouraging strategies specific to the feedback equations defin-

ing SDKF. Goal-directed movements, in both natural reaching and BMI settings, tend to begin

with a high-speed, straight ballistic phase and tend to end with low-speed corrective movements

relying heavily on sensory feedback. SDKF detects these corrective movements in the form of

increased angular velocity, and correspondingly slows or stops the BMI cursor. This feature of

SDKF is akin to a “hockey stop,” whereby a fast moving hockey player makes a quick rotation

of his skates to bring about a crisp stop upon the ice. For SDKF, the result is a BMI cursor

that automatically slows down near the target in response to corrective movements, in contrast to

the overshooting behavior typically produced by standard BMI decoders. Figure 3.12 shows de-

coded angular velocity for SDKF and VKF as a function of distance to target. For both decoders,

angular velocities are low during the ballistic phase when the cursor is far from the target, and

as the cursor approaches the target, angular velocities increase. Interestingly, SDKF trajectories

showed larger angular velocities near the target compared to VKF, suggesting that the subject

may have adopted a strategy of exaggerating turns near the target because doing so would be

decoded by SDKF as a crisp “hockey stop.”

SDKF was designed to improve online BMI control of cursor speed. However, SDKF’s per-

formance benefits for online control, especially those that may be attributable to SDKF-specific
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Figure 3.12: Absolute angular velocity, |ωt|, as a function of cursor-to-target distance for SDKF

(black) and VKF (gray). Error bars denote ± one standard error (** denotes p < 0.001; * denotes

p < 0.01, Wilcoxon test). For each distance value, absolute angular velocities were first averaged

within each trial, and then a mean and standard error were computed across trials.
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Figure 3.13: Root-mean-squared errors for offline SDKF- and VKF-based decoding of arm

movements. Errors were first averaged within each trial, and then a mean and standard error

were computed across trials. Error bars denote ± one standard error. SDKF-decoding error was

significantly greater than VKF-decoding error (p = 3.2−20, one-sided t-test).

control strategies, need not result in improved performance when reconstructing arm movements

offline. We applied both SDKF and VKF toward offline reconstruction of arm velocity, and found

root-mean-squared reconstruction error to be nearly twice as large for SDKF relative to VKF

(Fig. 3.13). This result highlights the fact that decoding algorithms with superior performance

in online cursor control do not necessarily achieve superior performance in offline reconstruc-

tion, and as such, optimizing neural decoders offline cannot always be expected to yield the best

decoders for online BMI applications (Chase et al., 2009).

3.3 Discussion

We asked whether the moment-by-moment details of movement speed could be extracted from

motor cortical activity, and although we did find significant speed-related activity, our ability to

extract movement speed was substantially worse than our ability to extract movement direction.

In single-unit information analyses, we found roughly threefold higher frequencies of direction-

dominated units compared to speed-dominated units. In population decoding analyses, we were

able to predict movement direction with more than double the accuracy of corresponding speed

predictions. These results are problematic for BMI systems, which depend on the ability to

extract kinematic variables, including movement speed, from population activity on a moment-
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by-moment basis. To address this problem, we designed a BMI decoding algorithm, SDKF,

which increased the ability to stop and hold the BMI cursor at instructed targets by 70.8%.

3.3.1 Information and prediction analyses: sensitivity to modeling choices

The information and prediction analyses required specific data processing to ensure a fair com-

parison of the extractability of speed versus direction from neural activity. Because speed and

direction are continuous-valued quantities expressed in different units and with differing numbers

of degrees-of-freedom, we discretized speed and direction such that their discretized distributions

had matched marginal statistics. We chose a discretization that resulted in roughly equal numbers

of data points assigned to each of 26 speed labels and each of 26 direction labels.

With 26 discretization labels, chance prediction accuracy is 1

26
= 3.8% for both speed and

direction, i.e., the accuracy of the best predictor that does not have access to the underlying

neural activity. We chose to use 26 labels because there were 26 targets in the reaching task.

Movement speeds lie in a continuum with no natural set of boundaries, and thus the number of

speed labels must be arbitrary. When repeating the prediction analysis with different numbers of

discretization labels, {10, 15, 20, 40}, the results were consistent with those that we report when

using 26 discretization labels. The numbers of units with significantly greater MDI than MSI

remained consistent across all datasets, as did the numbers of units showing the opposite trend.

Similarly, direction prediction accuracy was significantly higher than speed prediction accuracy

for all datasets.

A logical alternative binning scheme is to discretize movement speeds using bins of con-

stant width, which would result in substantially different numbers of data points across speed

labels. With this alternative discretization scheme, we found that a single low-speed label can

account for up to 20% of data points. Here, a chance predictor that always predicts the most

frequent speed label will have an accuracy of 20% without considering the neural activity, thus

complicating the ability to compare speed predictability with direction predictability. Even so,

we found that speed prediction accuracy under this alternative discretization scheme was only a

few percent better than chance.

Finally, for simplicity, the information and prediction analyses ignore temporal autocorrela-
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tion in the kinematics data. For the center-out reaching task, movement direction tends to be

very similar across timesteps in a single trial. Movement speed tends to have more temporal

variability, as speeds tend to have bell-shaped profiles throughout each trial. Incorporating such

structure ought to improve direction prediction accuracy by more than it would improve speed

prediction accuracy, thus only conservatively biasing our findings.

3.3.2 Movement representations in motor cortex

Previous studies have identified speed-related information in the activity of single motor corti-

cal neurons (Schwartz, 1992, 1994; Moran and Schwartz, 1999b; Churchland et al., 2006; Ifft

et al., 2011), as well as in motor cortical signals recorded from intracortical local field potentials

(Heldman et al., 2006), electrocorticography (Anderson et al., 2012), magnetoencephalography

(Jerbi et al., 2007), positron emission tomography (Turner et al., 2003), and functional magnetic

resonance imaging (Rao et al., 1996). We found speed-related information as well, but when

quantified relative to direction-related information, the extracted speed signals appear surpris-

ingly weak. We can think of three potential interpretations of these results. The first is that

instantaneous speed is robustly represented in motor cortex, but our analysis techniques were

incompatible with the details of the neural encoding. The second is that the motor cortical rep-

resentation of instantaneous speed, though weak relative to direction, is strong enough to enable

robust control of movement speed. The third is that instantaneous speed is not robustly rep-

resented in motor cortex, and other factors which we did not consider combine to implement

movement speed. We discuss each of these possibilities in turn below.

If motor cortex does encode the fine-timescale details of movement speed, why did our anal-

yses not reveal a robust speed signal? One possibility is that the subset of units carrying reliable

speed information might change depending on other kinematic parameters, such that the pop-

ulation of neurons actually controlling movement speed dynamically changes. For example, it

has been demonstrated that there is an interaction between direction and speed, such that speed

modulations are only apparent in the firing rates of a neuron during movements in the neurons

preferred direction (Schwartz, 1992; Moran and Schwartz, 1999b). Decoding techniques that

explicitly account for such dependencies might enable a more robust extraction of movement
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speed. Another possibility is that speed may be encoded more broadly across motor cortical

populations that are substantially larger than those recorded in this study. Our unit-dropping

analysis in Fig. 3.7A shows a shallow slope in the speed accuracy curve as more neurons were

added to the decoder, suggesting that even if we had recorded from greater numbers of neurons,

speed predictions might still be substantially less accurate than direction predictions. However,

array recordings are typically biased towards monitoring populations of neurons located on cor-

tical gyri, and it may be that speed information can be more readily extracted from neurons in

the less-accessible banks of cortical sulci. A third possibility is that speed is carried through a

different neural code than we assumed. We applied methods to identify kinematic information in

spike counts of motor cortical neurons. While suggestive, our results leave open the possibility

that movement speed is encoded in patterns of spike timing rather than spike counts. Spike tim-

ing information has been found in other systems, such as the rat whisker system (Panzeri et al.,

2001), the mouse visual system (Jacobs et al., 2009), and the primate auditory system (Chase

and Young, 2008). However, reports of spike timing codes in the motor system have been lim-

ited (although, see Hatsopoulos et al. (1998)). Finally, we note that the center-out task does not

impose explicit requirements on movement speed throughout a reach, and it might be possible to

design a reaching task that better modulates population activity with respect to movement speed.

Could the amount of speed information we found be enough to support precise control of arm

speed? It is difficult to know how much information is necessary to enable the degree of speed

control that our subjects exhibited during arm reaching. Further, control over the moment-by-

moment details of speed was not an explicit requirement in the arm reaching task. Rather, our

subjects simply had to move to the target within a specified amount of time, and maintain sta-

bility in the target for a specified hold period. Further experiments will be required to determine

how much information is necessary to enable to precise control of speed in arm movements. In

simulation, however, we found that populations of neurons carrying the amounts of speed infor-

mation that we measured in real neurons demonstrated deficiencies in cursor stability at targets

similar to those demonstrated in real BMI control by a monkey (Fig. 3.10). While the simulation

analysis was framed in the context of BMI, we believe it also has implications for natural move-

ment control. Since the simulated neural encoding was fit to real neural activity underlying arm
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movements, these results suggest that arm movements rely on more than a readout of movement

kinematics from motor cortical activity.

A third interpretation is that motor cortex is not the sole arbiter of movement speed, but

may coordinate with other brain areas that contribute toward movement speed control (Tan et al.,

2009). The role of M1 in driving movements has been extensively debated (for reviews, see Scott

(2003); Schwartz (2007)). While much evidence has been presented in support of M1 encoding

instantaneous movement details (Georgopoulos et al., 1982; Scott and Kalaska, 1997; Morrow

and Miller, 2003), several studies have suggested a more dynamics-based encoding (Aflalo and

Graziano, 2007; Churchland et al., 2012). For example, it may be that M1 specifies a desired peak

speed for a particular movement, and that the motor periphery is responsible for generating the

fine-timescale dynamics of movement speed. More generally, the speed signal in cortical activity

may not be isomorphic with arm speed. The signal from motor cortex must be understood as only

one factor combined with additional neural processing in the many other neural structures with

speed-dependent activity, transformed by musculo-skeletal action to produce arm movement. A

better understanding of motor cortical operations and their contribution to arm movement will

make it possible to develop more accurate extraction algorithms for decoding the details of this

behavior.

An important distinction in the present study is that we sought to quantify the informa-

tion in single-trial, simultaneously-recorded population neural activity about kinematics dur-

ing a single 30 ms timestep, as this is the relevant timescale for online BMI decoding. Moran

and Schwartz (1999b) identified a robust speed representation in trial-averaged data generated

from sequentially-recorded units whose responses were combined as a population. We repeated

that analysis with the data from the current study and also found a robust speed representation

(not shown). This correspondence suggests that although speed is encoded across sequentially-

recorded populations, it is difficult to extract from populations of simultaneously-recorded units

in the real-time setting of BMI, possibly due to correlated noise in single-trials that can be sup-

pressed when averaging across trials.
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3.3.3 Implications for brain-machine interface control

Similar to natural reaching movements, BMI cursor movements require precise speed control.

Typical approaches to decoding BMI movements assume a relatively simple encoding of speed

(e.g., linear through a velocity tuning model as in VKF). We found that an independent speed

and direction model matched the neural data better than direction-only, speed-only, and velocity-

only models. However, the information and prediction analyses in this study imply that adjusting

these modeling assumptions, e.g., by using a non-linear encoding model, may still result in

limited BMI performance with respect to decoded speed because the moment-by-moment details

of neural firing do not appear to carry requisite levels of speed information.

To overcome the apparent limitation in available speed information, we designed SDKF using

a novel approach toward achieving high-fidelity control of speed in a BMI. SDKF incorporates

a well-controlled neural signal, that of movement angular velocity, to improve upon the low-

fidelity speed signal present in neural activity. By incorporating a tradeoff between movement

speed and angular velocity, speed accuracy is improved without requiring neural activity to sup-

ply an accurate speed signal. This SDKF design feature was informed in part by natural arm

movements. First, as previously mentioned, natural arm movement speeds are influenced by the

dynamics of the muscles and spinal cord, which may possibly alleviate the need for M1 to spec-

ify the moment-by-moment details of movement speed. In this sense, SDKF has a biomimetic

interpretation in that the history dependent trajectory model (Eq. 3.29) imposes speed dynamics

that are not directly specified by the neural activity. Second, natural arm movements have been

shown to demonstrate a tradeoff between speed and curvature, often referred to as the two-thirds

power law (Lacquaniti et al., 1983). Neural correlates of this relationship have been reported in

previous studies of motor cortical activity underlying arm movements (Schwartz, 1994; Moran

and Schwartz, 1999a). We used angular velocity (the temporal derivative of direction) as a proxy

for curvature (the spatial derivative of direction) to simplify the BMI implementation.

While the implemented tradeoff between speed and angular velocity enables SDKF to apply

speed information not directly specified by the neural activity, the tradeoff alone is not sufficient

to supply all of the requisite speed information. For example, changes in movement speed may be

desired when changes in direction are not, especially for straight movements typical in a center-
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out task. For this reason, we incorporate the tradeoff between speed and angular velocity as

an additional mechanism to complement the speed control implicit in SDKF’s velocity encoding

model. Future work will be needed to determine how well the SDKF trajectory model generalizes

to tasks requiring curved movements (e.g., pursuit, circle drawing). It remains to be seen whether

speed dampening is assistive or restrictive in these tasks.

A trivial means of improving cursor stability at targets is to simply slow down the decoded

cursor movement. A slower cursor provides the subject with more time to instruct corrective

movements to avoid inadvertent overshoot upon target acquisition. However, this approach in-

creases movement times and decreases the overall throughput of the BMI. We applied a con-

stant speed gain to SDKF such that movement times were matched between SDKF and VKF.

With higher success rates for the same movement time, SDKF achieves a substantially higher

throughput than does VKF. Rather than choose speed gains to match movement times, we could

have matched mean movement speeds (VKF speeds were slightly faster on average than SDKF

speeds). In this case, we would expect SDKF movement times to be shorter than those for VKF,

but potentially at the expense of success rates for longer hold times. BMI decoders are inherently

subject to this speed-accuracy tradeoff (Gowda et al., 2012), and in future experiments it may

be worthwhile to specifically probe this tradeoff by evaluating decoders across a range of speed

gains.

Previous BMI studies have proposed alternative approaches to solving the “cursor-stopping

problem.” One approach is to directly decode a discrete target variable, such as movement end-

point (Yu et al., 2007; Srinivasan et al., 2006; Shanechi et al., 2013), which could then be used

to either constrain a subsequent trajectory estimate or to generate automatic control signals for

acquiring the target. Additional approaches are to decode using a nonlinear neural tuning model

that directly incorporates intended movement speed (Li et al., 2009b) or to decode a binary stop

signal (Hwang and Andersen, 2009; Velliste et al., 2010; Kim et al., 2011; Nuyujukian et al.,

2012). Taking an alternative approach, Gilja et al. (2012) recently demonstrated improved cursor

stopping by applying assumptions based on feedback control. Finally, providing other modalities

of sensory feedback (in addition to visual feedback) might help the subject better control BMI

movement speed (ODoherty et al., 2011). SDKF offers a complementary solution that enables
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the user to continuously guide and stop the cursor, while relying relatively little on the capacity

for neural activity to directly specify movement speed.

Gilja et al. (2012) provide a comparison across studies in terms of Fitt’s throughput, as com-

puted by:

Index of Difficulty = log2
Distance + Window

Window
(3.1)

Throughput =
Index of Difficulty

Acquire time
(3.2)

In the present study, the distance between workspace center and target center was 85 mm, and

cursor and target radii were each 7 mm. Because target acquisition was defined by cursor-target

overlap, the effective window size was 14 mm. For SDKF trials with required holds between

0-600 ms (expected hold time was 300 ms) and without cursor recentering, mean acquire time

was 1.24 s, resulting in a throughput of 2.28 bits/s. The algorithm of Gilja et al. (2012) achieved

throughputs of 1.48 bits/s and 1.81 bits/s in a task requiring 500 ms holds and without cur-

sor recentering. We provide these numbers to approximately align between studies, however

differences between subjects and differences in trial structure may make exact comparisons im-

possible. Another important distinction is that in our task, trials were failed if target acquisition

was lost at any time before the hold requirement was satisfied, whereas Gilja et al. (2012) con-

tinued trials until the hold requirement was satisfied while keeping track of the “dial-in” time

between the initial target acquisition and completion of the target hold. For our study, success

rate summarizes the subject’s ability to stop and hold, whereas “dial-in” time is the analogous

metric used by Gilja et al. (2012). Neither of these statistics factor into Fitt’s throughput, and as

such, Fitt’s throughput cannot be used in this form to summarize stopping ability. A more direct

comparison between SDKF and the aforementioned approaches might prove insightful in future

work, and we believe that a combination approach leveraging the innovations presented across

these studies is likely to yield the best results.

The general design principles underlying SDKF demonstrate the potential for performance

gains when highly-controllable neural modulations, previously used to drive one subset of con-

trol dimensions in the BMI task space (e.g., movement direction), are tapped to improve control
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across other dimensions of the BMI task space (e.g., movement speed). Importantly, these per-

formance gains may be enhanced through subjects’ adoption of cognitive control strategies that

are effective in an online setting when paired with a decoder designed to be compatible with

these strategies (e.g., instruct a sharp turn when a crisp stop is desired).

3.4 Methods

3.4.1 Neural recordings and behavioral tasks

Monkeys performed two tasks: an arm reaching task, and a BMI cursor control task. All animal

procedures were performed with the approval of the Institutional Animal Care and Use Commit-

tee of the University of Pittsburgh.

Neural recordings I: arm reaching

Two male rhesus macaques (Macaca mulatta) were implanted with 96-channel microelectrode

arrays (Blackrock Systems, Salt Lake City, Utah) in motor cortex contralateral to the reaching

arm used in the behavioral task. Neuronal activities were manually sorted (Plexon, Dallas, Texas)

from single- and multi-neuron units, and spike times were recorded throughout the behavioral

tasks. Monkey F arm reaching data has been previously described in Fraser and Schwartz (2012).

Briefly, monkey F had two arrays: one array targeted proximal arm area of primary motor cortex,

and a second array targeted ventral premotor cortex. Across both arrays, 119 units were identified

and tracked across four experimental sessions using techniques described in Fraser and Schwartz

(2012). Monkey T had a single array targeting arm proximal area of primary motor cortex.

Across five experimental sessions, 67.8 ± 11.4 units were identified.

Behavioral task I: arm reaching

Both monkeys were trained to perform 3D arm reaching movements. Arm movements were

tracked at 60 Hz using an infrared marker (Northern Digital, Waterloo, Ontario) taped to the

wrist of the reaching hand. Tracked positions were displayed to the subjects as a spherical vir-
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tual cursor (radius 8 mm) on a stereoscopic display (Dimension Technologies, Rochester, NY).

Movements were either from a workspace-centered virtual target to one of 26 virtual periph-

eral targets (center-out), or from a peripheral target to the central target (out-center). All targets

were displayed as spheres (radius, 8 mm), and peripheral targets were distributed roughly evenly

about the surface of a virtual sphere (radius: 66 mm, monkey F; 75 mm, monkey T). A trial

was initiated by the subject acquiring visible overlap of the cursor with the start target for 400-

600 ms. Next, a virtual target was presented, and the subject was required to acquire that target

with the virtual cursor within 800 ms of presentation and hold with visible overlap for another

400-600 ms. Trials were deemed successful upon completing this sequence and were followed

by a water reward of 60 µL (monkey F) or 150 − 190 µL (monkey T). Failed trials were not

rewarded.

We analyzed 1,040 successful trials from monkey F and 1,316 successful trials from monkey

T. All analyses were performed on data recorded during the period between completion of the

start hold and beginning of the target hold.

Neural Recordings and Behavioral Task II: BMI Control

Monkey F also performed an eight-target 2D center-out BMI cursor task, whereby recorded

neural activity was translated in real-time into movements of a BMI cursor. The cursor (radius,

7 mm) and targets (radius, 7 mm) were displayed to the subject on a fronto-parallel display.

Target directions were chosen pseudorandomly from one of eight directions spaced uniformly

about the perimeter of a workspace-centered circle (radius, 85 mm), and unless noted otherwise,

target hold times were randomly drawn from a uniform distribution (range, 0-600 ms). The

subject initiated a new trial by modulating neural activity to drive the cursor to visibly overlap

a workspace-centered target for 150 ms. After this initial hold, a peripheral target appeared,

instructing the subject to acquire the target with the BMI cursor. A trial was deemed successful

if the subject acquired and maintained target acquisition for the trial-specific hold period. A trial

was deemed failed if the cursor left the target within the hold period following target acquisition,

or if the target was not acquired within 3 s after target onset. The subject was naı̈ve to each

trial’s target hold requirement until trial completion. Successful trials were rewarded with 150-
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180 µL of water. To initiate the next trial, the subject needed to return the cursor to again visibly

overlap a workspace-centered target for 150 ms. The cursor was automatically returned to the

workspace center only following trials that the subject failed by exceeding the 3 s time limit on

target acquisition.

Two dimensional cursor velocity was decoded from recorded neural population activity using

either a novel speed-dampening Kalman filter (SDKF) or a standard velocity-only Kalman filter

(VKF). Each experimental session consisted of alternating blocks of trials under SDKF control

and blocks of trials under VKF control. The decoder applied during the first block was selected

randomly at the beginning of each session. Across six experimental sessions, neural responses

from 86.1± 12.2 single- and multi-units were sorted, and spike counts were recorded in 33 ms

non-overlapping bins. In total, the subject performed 1,216 successful trials with each decoder.

During four additional experimental sessions, target hold requirements were relaxed to 50 ms.

In these sessions, cursor movements were decoded by VKF only, using 95.3 ± 9.7 units. All

other experimental methods match those described above with the exception that in two of these

sessions, the cursor automatically snapped back to the workspace center following trial success.

The subject performed 2,352 trials under this 50 ms hold condition.

3.4.2 Data discretization

Arm movements were segmented into non-overlapping 30 ms intervals, and average movement

speed and movement direction were computed across each 30 ms interval. We labeled each

30 ms interval with one of 26 candidate speed labels and one of 26 candidate direction labels.

For a given movement speed, the applied speed label corresponded to the nearest of 26 candidate

speed centroids. This set of speed centroids was chosen for each experimental session such that

each label was applied to approximately the same number of data points (Fig. 3.14B). For a

given movement direction, the applied direction label corresponded to the direction centroid, of

26 candidate centroids, whose angle with the actual movement direction was smallest. Direction

centroids were optimized such that each of the 26 direction labels was applied to approximately

the same number of data points (Fig. 3.14C). This discretization procedure results in a uniform

prior distribution of movement speed and a matched uniform prior distribution of movement
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Figure 3.14: Discretization of movement kinematics from rep-

resentative dataset F081909. (A) The trial-averaged speed

profile (black) and several speed profiles from example tri-

als (gray). (B) Speeds were discretized using thresholds

(gray lines) resulting in a uniform distribution across 26

speed labels (i.e., the area of the black curve is constant be-

tween any two consecutive gray lines). (C) Movement di-

rections were discretized according to the 26 shaded patches

on the sphere. A given 3D movement direction (corre-

sponding to a point on the sphere) was labeled accord-

ing to the direction centroid, of 26 candidate centroids,

whose angle with the given movement direction was the smallest. Direction centroids were

chosen such that each of the 26 labels were applied with approximately the same frequency (i.e.,

the same number of direction points fall within each of the 26 patches shaded on the sphere).

directions. By matching these distributions, chance prediction accuracy is thus also matched

between the two kinematic quantities. The following section details the optimization procedure

for discretizing movement directions.

3.4.3 Optimization for direction discretization

To discretize movement direction, we labeled each timestep in a dataset according to the direc-

tion centroid, of 26 candidate centroids, whose angle with the measured movement direction was

smallest. We designed the following optimization procedure to choose the set of direction cen-

troids such that the discretization would result in approximately the same number of data points

for each discretization label.

Given a set of direction centroids, we discretized the actual movement directions and com-

puted the entropy of the resulting discretization:
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−
∑

x∈X

p(x) log2 p(x) (3.3)

where X is the initialized set of direction labels and p(x) is the fraction of data points whose

minimum angle direction label was x. Next, we selected one direction centroid and applied a

small random rotation. We recomputed the entropy after discretizing the data using this perturbed

direction label and the remaining 25 unperturbed labels. If this entropy was greater than the

entropy prior to the random rotation, the rotated direction label was accepted. Otherwise, the

rotation was rejected, and set of direction centroids reverted back to the set prior to this random

rotation. This process was repeated over 5 million iterations.

We initialized the procedure with the set of 26 target directions from the arm reaching task.

In each iteration, we randomly selected the direction centroid to perturb to be either the centroid

that labeled the most number of data points or the centroid that labeled the least number of

data points. If the entropy had not increased after 1,000 consecutive iterations (i.e., no random

rotations were accepted), the centroid to perturb was selected at random from the full set of 26

centroids. Random rotations were applied by (i) defining a 3D unit vector in the direction of the

unperturbed centroid, (ii) perturbing this unit vector by adding to each coordinate an independent

draw from a Gaussian distribution with standard deviation 1 × 10−4, and (iii) projecting the

perturbed unit vector back onto a unit sphere.

By construction, this procedure is guaranteed to produce a sequence of non-decreasing en-

tropies, and is thus guaranteed to converge to either a local or global maximum. The theoretical

maximum entropy is log2(26) ≈ 4.7 when the p(x) are equal for all direction labels. If the

number of data points, n, in a dataset does not divide evenly into 26, this theoretical maximum

is achieved when the p(x) differ by at most 1

n
. In practice, optimized discretizations resulted in

entropies that were within 4× 10−5 of the theoretical maximum entropies.

3.4.4 Information analysis

Over a series of time lags, τ ∈ [−300 ms, 300 ms], we assembled tuples of kinematic and neural

measurements, {st, dt,yt−τ}, where st ∈ {s1, ..., s26} is the discretized speed for the 30 ms
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interval beginning at time t, dt ∈ {d1, ..., d26} is the discretized direction for the 30 ms interval

beginning at time t, and yt−τ ∈ Z
q is a vector containing the spike counts across the q units during

the 30 ms interval beginning at time t − τ . For unit j and time lag τ , the mutual information

between spike counts and discretized kinematics is:

Ij,τ =
∑

x∈Xτ

∑

y∈Yj

p(x, y) log2

(

p(x, y)

p(x)p(y)

)

(3.4)

where Yj is the set of unique, non-overlapping 30 ms spike counts observed for unit j (e.g.,

Yj = {0, 1, 2} for a neuron that spiked at most twice during any 30 ms bin), and Xτ is the

set of kinematics labels for time intervals that lag the spike counts in Yj by τ ms. The labels

in Xτ correspond to discretized movement speeds, {s1, ..., s26}, when movement speed is the

kinematics variable of interest, and similarly to discretized movement directions, {d1, ..., d26},

when movement direction is the kinematics variable of interest. The terms p(x), p(y) and p(x, y)

are the normalized frequencies of kinematics label x, spike count y, and joint pair (x, y), respec-

tively. In the event that the pair (x, y) does not appear in a dataset (i.e., p(x, y) = 0), we evaluate

the summand in Eq. 3.4 to be 0.

Significance testing for information analysis

Information measures are known to be biased such that one can measure positive values of in-

formation when in fact the variables are independent (Treves and Panzeri, 1995). To determine

whether a unit’s MDI and MSI values were greater than expected by chance, we performed the

following permutation test. To determine a null information value, we shuffled the correspon-

dence between spike counts and discretized kinematics, and then computed mutual information.

This shuffle preserves the marginal distributions of spike counts and kinematics, but destroys

any relationship between the quantities. To obtain a distribution of null information values, we

repeated this procedure 10,000 times using speed as the kinematic variable, and similarly using

direction as the kinematic variable. We determined a p-value for each kinematic variable to be

the fraction of null information values that were larger than the single mutual information value

determined from the non-shuffled data.
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To determine whether a unit’s MDI and MSI values were significantly different from each

other, we performed the following bootstrap procedure (Efron and Tibshirani, 1993). For a

dataset consisting of n timesteps, we generated a resampled dataset by randomly drawing n

timesteps with replacement from the original dataset and then computed mutual information val-

ues across all lags for speed and direction. We repeated this computation 20,000 times, and de-

termined p-values by computing the fraction of resampled computations resulting in MDI greater

than MSI or MSI greater than MDI.

3.4.5 Simulated neural populations

To provide intuition for the information and prediction analyses, we simulated neural population

activity under four parametric encoding models. For each model, we fit parameters to actual

recorded neural activity and arm kinematics from a representative dataset (F081909). We then

generated spike counts from each encoding model, again using the actual recorded kinematics

from the example dataset. This procedure provides simulated datasets that exactly match the

example real dataset with respect to the number of units, number of reaches, duration of reaches,

and statistics of kinematics.

We simulated positive firing rates according the following encoding models.

Direction-only tuning:

log(rt−τ ) = b1
vt,1
||vt||

+ b2
vt,2
||vt||

+ b3
vt,3
||vt||

+ b0 (3.5)

Speed-only tuning:

log(rt−τ ) = bs||vt||+ b0 (3.6)

Velocity tuning:

log(rt−τ ) = b1vt,1 + b2vt,2 + b3vt,3 + b0 (3.7)
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Independent speed and direction tuning:

log(rt−τ ) = b1
vt,1
||vt||

+ b2
vt,2
||vt||

+ b3
vt,3
||vt||

+ bs||vt||+ b0 (3.8)

where rt is the firing rate at timestep t, vt = [vt,1 vt,2 vt,3] is a three-dimensional reach velocity,

and ||vt|| is the corresponding reach speed. The {b} are coefficients fit to data. For a given unit,

the time lags, τ , in the direction-only and speed-only models were chosen to be the lags at which

that unit achieved its MDI and MSI, respectively, from the information analysis over the real

data. In the velocity and independent speed and direction models, the time lags were chosen to

be the lag associated with the larger quantity between that unit’s MDI and MSI. After simulating

these firing rates, we then generated noisy spike counts, yt, according to:

yt−τ | vt ∼ Poisson(rt−τ ·∆t) (3.9)

where ∆t = 30 ms matched the binning used in the information and decoding analyses.

3.4.6 Linear regression analysis

In the regression analysis, we fit the following direction-only, speed-only, and velocity tuning

models:

Direction-only tuning:

yt−τ = b1
vt,1
||vt||

+ b2
vt,2
||vt||

+ b3
vt,3
||vt||

+ b0 (3.10)

Speed-only tuning:

yt−τ = bs||vt||+ b0 (3.11)
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Velocity tuning:

yt−τ = b1vt,1 + b2vt,2 + b3vt,3 + b0 (3.12)

where yt is the spike count during timestep t, vt = [vt,1 vt,2 vt,3] is a three-dimensional reach

velocity, and ||vt|| is the corresponding reach speed. The {b} are coefficients fit to data. Each

model was fit separately across a range of time lags, τ ∈ [−300 ms, 300 ms].

3.4.7 Neural decoding for arm reaching

To characterize the kinematic information carried by simultaneously-recorded population activ-

ity, we performed a population-decoding analysis. We trained Poisson naı̈ve Bayes (PNB) clas-

sifiers (Shenoy et al., 2003) to independently predict discretized movement speed and movement

direction from a 30 ms population spike count vector. In the current analysis, PNB assumes that

(i) each neuron fires at a characteristic rate determined by the current kinematics (either move-

ment direction or movement speed), (ii) given these kinematics, each neuron fires independently,

and (iii) observed spike counts are Poisson noise-corrupted instantiations of the characteristic

rates. PNB, while explicitly specifying the structure of the relationship between neural activity

and kinematics, can capture nonlinear tuning effects and Poisson-like signal-dependent noise.

The probabilistic model for PNB is given by:

P (xt = k) = pk (3.13)

P (yt,j | xt = k) =
γ
yt,j
j,k exp(−γj,k)

yt,j!
(3.14)

P (yt | xt = k) =

q
∏

j=1

P (yt,j | xt = k) (3.15)

where Eq. 3.13 defines the the prior probability of kinematics xt, Eq. 3.14 is the probability of the

observed spike count yt,j for unit j given the current kinematics, and Eq. 3.15 is the probability

of the observed population spike count vector, yt = [yt,1, . . . , yt,q]
′, across q simultaneously-
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recorded units, given the current kinematics. The parameters of the PNB model are the pk for

k ∈ {1, . . . , 26}, representing the prior probability of kinematics label k, and the firing rate

parameters {γj,k} for each neuron j given kinematics label k. These model parameters were

determined via maximum likelihood over the training data. By design of the kinematics dis-

cretization, pk ≈ 1
26

for both speed and direction, where the correspondence is approximate

rather than exact due to the fact that training data were chosen randomly from each dataset (see

description of cross-validation below). To predict movement kinematics given an observed spike

count vector, we compute:

x̂t = argmax
k

P (xt = k | yt)

= argmax
k

P (xt = k)P (yt | xt = k) (3.16)

Spike counts and discretized kinematics used in this analysis were identical to those used in the

information analysis.

As described, PNB enables a prediction of the current kinematics given the current neural

activity. To predict kinematics based on a history of neural activity, we used an augmented

PNB model that incorporates the entire causal history of non-overlapping 30 ms spike counts

beginning 300 ms before the corresponding movement kinematics. The probabilistic model for

this history-based PNB includes the prior from Eq. 3.13, and replaces Eqs. 3.14 and 3.15 with:

P (yt−τ,j | xt = k) =
γ
yt−τ,j

j,k,τ exp(−γj,k,τ)

yt−τ,j!
(3.17)

P (yt−300,yt−270, . . . ,yt | xt = k) =
∏

τ∈T

q
∏

j=1

P (yt−τ,j | xt = k) (3.18)

where Eq. 3.17 gives the the probability having observed yt−τ,j spikes from unit j at time t − τ

given the current kinematics, and Eq. 3.18 is the joint probability of having observed the history

of spike counts over the past 300 ms across the q recorded units, given the current kinematics.

The parameters {γj,k,τ} are now indexed for each neuron j, kinematics label k, and time lag
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τ ∈ T , where T is the set of lags from 0-300 ms in 30 ms intervals. To predict movement

kinematics given the spike count history, we compute

x̂t = argmax
k

P (xt = k | yt−300, . . . ,yt)

= argmax
k

P (xt = k)P (yt−300, . . . ,yt | xt = k) (3.19)

To assess how well the speed- and direction-based PNB models would generalize to unseen

data, we performed 2-fold cross validation. Data were randomly partitioned into two subsets.

First, we trained PNB models on the first subset and evaluated predictions using the second

subset. Next, we reversed this process, training PNB models on the second subset and evaluating

predictions on the first subset. In this fashion, each model was evaluated using data not seen

during model fitting.

3.4.8 Neural decoding for BMI control

Two-dimensional cursor velocity was decoded from binned spike counts using either a velocity-

only Kalman filter or a novel speed-dampening Kalman filter. For both decoders, two-dimensional

cursor positions were computed by integrating the corresponding decoded velocity.

Velocity-only Kalman filter (VKF)

For BMI control, we implemented a Kalman filter (Kalman, 1960) to predict intended movement

velocity given a sequence of recorded neural activity. Kalman filter predictions combine knowl-

edge from a trajectory model describing the relationship between velocities from one timestep

to the next, and from an encoding model describing the relationship between spike counts and

intended velocity. When trajectory and encoding models are linear-Gaussian, the Kalman filter

velocity predictions are optimal with respect to mean-square error of predicted velocities.

The trajectory model underlying the Kalman filter takes the form:
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vt | vt−1 ∼ N (Avt−1,Q) (3.20)

where vt ∈ R
2 is the velocity intention at timestep t, A ∈ R

2×2 maps beliefs about the velocity

at timestep t− 1 into beliefs for timestep t, and Q ∈ R
2×2 is a covariance matrix describing the

uncertainty corresponding to this mapping. The encoding model is defined as:

yt | vt ∼ N (Cvt + d,R) (3.21)

where yt ∈ R
q is the vector of spike counts simultaneously recorded across q units at timestep t,

C ∈ R
q×2 maps intended velocity to expected spike counts, d ∈ R

q accounts for baseline firing

rates, and R ∈ R
q×q is the observation noise covariance. We fixed A = I and estimated Q,C,d,

and R (constrained to be diagonal) via linear regression over data collected from a calibration

session (described below). In every session, these estimated parameters resulted in a stable VKF

decoder.

The Kalman filter predicts the subject’s intended movement velocity given all recorded neural

activity up to the current timestep. The Kalman filter prediction is a distribution over intended

velocities, which takes the form of a multivariate normal distribution, i.e., P (vt | y1, ...,yt) =

N (v̂t,Σt). At each timestep, t, the Kalman filter algorithm estimates the expected velocity, v̂t,

and a corresponding uncertainty, Σt, given all neural activity up to the current timestep.

Kalman filter predictions are computed recursively, such that the prediction at a given timestep

is computed using the prediction from the previous timestep. First, the trajectory model from

Eq. 3.20 is used to project previous predictions through a one-step update (Eqs. 3.24 and 3.25).

To determine the relative contributions of this trajectory-only update and the current neural activ-

ity, the Kalman gain is computed (Eq. 3.26) by integrating the uncertainties due to the trajectory

and encoding models. This gain term is then used to incorporate the current neural activity into

the current prediction (Eq. 3.27). Finally, the uncertainty of this prediction is computed based on

the uncertainty from the one-step update, but reduced to reflect the information gained from the
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current neural activity (Eq. 3.28). VKF provides a stable decoding system (residual velocities

will decay to zero if neural inputs remain constant at baseline) when the maximal eigenvalue of

At −KtCAt, from Eq. 3.27, is less than one.

VKF algorithm

initialize:

v̂0 = 0, Σ0 = 0 (3.22)

for t ∈ {1, . . . , T}

At = A (3.23)

v̂−
t = Atv̂t−1 (3.24)

Σ−

t = AtΣt−1A
′

t +Q (3.25)

Kt = Σ−

t C
′(CΣ−

t C
′ +R)−1 (3.26)

v̂t = v̂−

t +Kt(yt −Cv̂−

t − d) (3.27)

= (At −KtCAt)v̂t−1 +Kt(yt − d)

Σt = Σ−

t −KtCΣ−

t (3.28)

Kalman filters have been applied effectively toward decoding movement kinematics from

neural activity in the context of both offline reconstruction of natural arm movements (Wu et al.,

2006) and online control of a BMI (Wu et al., 2004; Kim et al., 2008; Koyama et al., 2010b; Li

et al., 2011; Hochberg et al., 2012; Orsborn et al., 2012; Gilja et al., 2012). When implementing

a Kalman filter, one must select the state variables to be modeled by the trajectory and encoding

models. Previous studies have shown that Kalman filters with a velocity-only state representation

provide superior online BMI control compared to a position-only state representations (Kim

et al., 2008). Thus, as a baseline for comparison, we implemented a velocity-only Kalman filter

(VKF).

Training data for building the VKF decoder were collected during a closed-loop calibration

session prior to each experiment (Velliste et al., 2008; Chase et al., 2012). Calibration sessions

consisted of center-out trials with decreasing levels of assistance, whereby cursor velocities or-

thogonal to the center-to-target direction were automatically attenuated. In an initial block of 8

trials, model parameters were chosen randomly, and complete error reduction was applied, re-
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sulting in straight-to-target cursor trajectories. VKF parameters were fit to the recorded neural

activity and velocity intentions, which were assumed to be in the center-to-target direction with

constant speed. For this initial fitting step, each trial contributed roughly 30 timesteps of both

intended velocity and spike count vectors (recorded in 33 ms non-overlapping bins). This initial

quantity of data appears to be sufficient for determining an initial set of VKF parameters. In

the second block of 8 trials, these VKF parameters were implemented, and error attenuation was

decreased slightly. We repeated this cycle for typically 5 blocks (40 trials), fitting new VKF

parameters after each block using all previous trials. All error attenuation was eliminated by the

last calibration block such that the subject operated the BMI under complete neural control.

A speed-dampening Kalman filter for closed-loop BMI control

The speed-dampening Kalman filter (SDKF) extends the velocity-only Kalman filter by enforc-

ing a tradeoff between movement speed and magnitude of angular velocity. SDKF implements

this tradeoff through an adaptive trajectory model

vt | vt−1 ∼ N (λtAvt−1,Q) (3.29)

where λt ∈ [0, 1] is a time-varying speed-dampening factor that is given values near 1 when the

cursor trajectory has been straight and shrinks toward 0 as angular velocity increases. In a given

experimental session, the remaining decoding parameters for SDKF, A,Q,C,d, and R, were

identical to those used for VKF.

To incorporate a tradeoff between speed and angular velocity, SDKF dampens the decoded

speed when the recently-decoded cursor trajectory exhibits a large absolute angular velocity.

Since angular velocity is ill-defined at near-zero speed, speed dampening is reduced when cursor

speeds are low, enabling the cursor to accelerate from stops. These design features are imple-

mented through an extension to VKF, whereby SDKF incorporates the adaptive trajectory model

described in Eq. 3.29. At each timestep, SDKF computes the direction of the most-recently

decoded velocity (Eq. 3.30) and the change in direction since the previous timestep (Eq. 3.31),
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wrapped to remain between -180 and 180 degrees. Next, the mean angular velocity is defined

as the average change in direction over the most recent three timesteps, which corresponds to

100ms (Eq. 3.32). Angular velocity-based speed dampening (Eq. 3.33) and speed-based speed

dampening (Eq. 3.34) are combined using Eq. 3.35, where λt ∈ [0, 1] is a time-varying speed-

dampening factor. SDKF exactly reproduces VKF decoding when λt = 1. For 0 ≤ λt < 1, the

one-step update in Eqs. 3.24 and 3.25 effectively shrinks the velocity prior toward 0, dampening

the decoded speed relative to the corresponding VKF decode.

SDKF algorithm

Same as VKF algorithm, but replace Eq. 3.23 with:

Θt = tan−1(
v̂t,2
v̂t,1

), Θt ∈ [−180, 180] (3.30)

Φt = mod (Θt −Θt−1 + 180, 360)− 180 (3.31)

ωt =
1

3

t
∑

k=t−2

Φk

∆t
(3.32)

λω
t = max(0, 1− α|ωt−1|) (3.33)

λs
t = max(0, 1− β||v̂t−1||) (3.34)

λt = min(1, λω
t + λs

t ) (3.35)

At = λtA (3.36)

We manually selected α = 1

3
and β = 8 to achieve the desired speed dampening during

preliminary experiments and fixed the parameters during all analyzed experiments. Speed-

dampening is shown as a function of speed and angular velocity in Fig. 3.15. As defined, SDKF’s

speed dampening can decrease decoded speeds, but cannot increase them. To match movement

times between VKF and SDKF, we multiplied SDKF-decoded velocities by a constant speed

gain factor of 3.

3.4.9 Simulated closed-loop control of movement

To establish a link between the information analyses and the closed-loop BMI control experi-

ments, we simulated closed-loop BMI control. Two-dimensional control of a cursor was driven

by a simulated population of neurons with log-linear tuning curves parametrized by the indepen-

dent speed and direction model of Eq. 3.8. Parameters of these tuning curves were fit to neural
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Figure 3.15: Speed-dampening, λt, as a function of the most recent angular velocity, ωt−1, and

speed, ||v̂t−1||, as defined by Eqs. 3.33–3.35. For straight movements, angular velocity is nearly

zero, resulting in λt near 1 and thus relatively little speed dampening. For curved movements,

angular velocity is larger, resulting in smaller λt and thus substantial speed dampening is applied.

Exceptions to these rules occur when movement speed is nearly 0, when λt are set to 1 regardless

of angular velocity so that the cursor may be accelerated with ease from rest.

and kinematics data recorded in the arm reaching task (dataset F081909) between target onset

and target acquisition. Speed and direction data were not discretized, and movement directions

were truncated from 3D to 2D to match the 2D BMI task. Simulated BMI movements were de-

coded using VKF, which was trained on these same arm reaching kinematics and corresponding

simulated spike counts. The simulated task was matched to the real BMI behavioral paradigm

with respect to target positions, target hold requirements, and conditions for task success.

At each simulated timestep, desired kinematics were chosen based on target position and the

most recent cursor position. Desired movement direction was straight from the most recent sim-

ulated cursor position to the target position. Desired movement speed depended on the distance

between the target and the most recent simulated cursor position. Desired speed was zero if the

cursor and target visibly overlapped by at least one half of the cursor radius. Otherwise, desired

speed was drawn from a normal distribution whose mean and standard deviation were matched

to real arm movement data for similar cursor-to-target distances. Simulated spike counts were

drawn from Poisson distributions with rates determined by these desired kinematics and the log-

linear tuning curves. Finally, a cursor update was decoded from the simulated spike counts using

VKF.
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Chapter 4

Internal models for interpreting neural

population activity during sensorimotor

control

4.1 Motivation

In this Chapter, we transition to leveraging the BMI paradigm for basic scientific studies of

internal models in the brain. Internal models are presumably rich entities that reflect the multi-

dimensional neural processes observed in many brain areas (Cunningham and Yu, 2014) and

can drive moment-by-moment decisions and motor output. However, to date, most studies have

viewed internal models through a restricted lens of individual neurons or low-dimensional be-

havioral measurements, which by definition cannot resolve multi-dimensional neural processes

(although see Berkes et al. (2011)). Here, we address these limitations by extracting a rich inter-

nal model from simultaneously recorded population activity in the primary motor cortex (M1) of

rhesus monkeys. Interpreting the high-dimensional neural activity through the lens of extracted

internal models provides an unprecedented view into the subjects’ motor control decisions on the

timescale of tens of milliseconds.

During proficient BMI control, as with other behavioral tasks, subjects make movement er-

rors from time to time. One possible explanation for these errors is that they arise due to sensory
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or motor “noise” that varies randomly from one trial to the next (Harris and Wolpert, 1998; Os-

borne et al., 2005; Faisal et al., 2008). Another possibility, which is the central hypothesis in this

study, is that a substantial component of movement errors is structured and can be explained by

a mismatch between the subject’s internal model of the BMI and the actual BMI mapping.

Testing this hypothesis required the development of a novel statistical method for estimating

the subject’s internal model from the recorded M1 activity, BMI cursor movements, and behav-

ioral task goals. The internal model represents the subject’s prior beliefs about the physics of

the BMI cursor, as well as how the subject’s neural activity drives the cursor. To justify the

study of internal models in a BMI context, we first asked whether subjects show evidence of

internal prediction during BMI control. Next, we asked whether interpreting M1 activity through

extracted internal models could explain movement errors that are present throughout proficient

BMI control and long-standing deficiencies in control of BMI movement speed. Finally, because

a key feature of internal models is their ability to adapt, we altered the BMI mapping and asked

whether the internal model adapted in a manner consistent with the new BMI mapping.

4.2 Results

We trained two rhesus monkeys to modulate neural activity to drive movements of a computer

cursor to hit targets in a two-dimensional workspace (Fig. 4.1). The family of BMI mappings

that we used is represented by:

xt = Axt−1 +But + b (4.1)

where xt is the cursor state (position and velocity), ut comprises the recorded M1 activity, and

A, B, and b are the parameters of the BMI mapping. All experiments began with a closed-loop

calibration of an intuitive BMI mapping, which was designed to provide proficient control as in

previous studies (Velliste et al., 2008; Chase et al., 2009; Koyama et al., 2010b). Subjects indeed

demonstrated proficient and stable control of the BMI (Fig. 4.2), with success rates of nearly

100%, and movement times on average faster than one second (Fig. 4.3).
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BMI

mapping

neuron 1

neuron N

visual feedback

BMI cursor

Figure 4.1: Schematic view of the brain-machine interface. Subjects produce neural commands

to drive a cursor to hit visual targets under visual feedback.

monkey A
session A080108

monkey C
session C052209

Figure 4.2: Closed-loop control of a brain-machine interface (BMI) cursor. Cursor trajectories

under the intuitive BMI mapping from the first 10 successful trials to each of 16 instructed targets

(filled circles) in representative data sets. Target acquisition was initiated when the cursor visibly

overlapped the target, or equivalently when the cursor center entered the cursor-target acceptance

zone (dashed circles). Trajectories shown begin at the workspace center and proceed until target

acquisition. Data are not shown during target holds.
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Figure 4.3: Proficient control of the brain-machine interface (BMI). (a) Histograms of within-

session averaged success rates and (b) movement times across all sessions and both monkeys.

Red lines denote averages across sessions, and triangles indicate the within-session averages for

the example sessions from Fig. 4.2. Movement times were calculated as the time elapsed between

target onset and target acquisition (i.e., excluding all hold times, but including reaction times)

4.2.1 Internal models underlie BMI Control

Subjects compensate for sensory feedback delays while controlling a BMI

Because internal models have not previously been studied in a BMI context, we sought evidence

of internal prediction. A hallmark of internal prediction is compensation for sensory feedback

delays (Shadmehr et al., 2010; Miall et al., 2007; Farshchiansadegh et al., 2015). To assess

the visuomotor latency experienced by a subject in our BMI system, we measured the elapsed

time between target onset and the appearance of target-related activity in the recorded neural

population (Fig. 4.4a). The delays we measured (τ = 3 timesteps ≈ 100 ms, monkey A; τ =

4 timesteps ≈ 133 ms, monkey C) are consistent with visuomotor latencies reported in arm

reaching studies of single-neurons in primary motor cortex (Schwartz et al., 1988). Next, we

asked whether subjects produced motor commands consistent with the current cursor position,
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which was not known to the subject due to visual feedback delay, or whether motor commands

were more consistent with a previous, perceived position (Fig. 4.4b,c and Fig. 4.19). If subjects

did not compensate for visual feedback delays and aimed from the most recently available visual

feedback of cursor position, we would expect errors to be smallest at lags of 100 ms and 133 ms

relative to the current cursor position for monkeys A and C, respectively (dashed red lines in

Fig. 4.4c). Rather, we found that these error curves had minima at lags close to 0 ms (dashed

black lines in Fig. 4.4c), indicating that motor commands through the BMI mapping pointed

closer to the targets when originating from the current cursor position than from any previous

position. This finding suggests that subjects use an internal model to internally predict the cursor

position.

Internal models initially persist upon perturbation of the BMI mapping

In Monkey A experiments, an initial block of trials under an intuitive BMI mapping was followed

by a block of trials under a perturbed BMI mapping. The perturbed BMI mapping effectively

rotated the pushing directions in B (Eq. 4.1) of a subset of the recorded units, such that the global

effect resembled a visuomotor rotation. If subjects form an internal model of the BMI mapping,

we should expect a systematic bias in movement errors immediately following application of the

perturbation. In Fig. 4.5a,b, we show the first trial following perturbation of the BMI mapping,

along with a set of “whiskers” illustrating how the same recorded neural activity would have

driven the cursor under the intuitive (i.e., unperturbed) BMI mapping. A particular whisker can

be interpreted as the subject’s internal prediction of how the cursor position evolved from the

last available feedback of cursor position, under the assumption that the subject’s internal model

is consistent with the intuitive BMI mapping. Interestingly, these whiskers all point toward the

target, even when the actual cursor velocity does not. These systematic differences suggest that

the subject maintains an internal model of the intuitive BMI mapping and that this internal model

persists in influencing neural activity immediately following perturbation to the BMI mapping.

Maintenance of an accurate internal model requires adaptation to the internal model when

faced with perturbations. We computed the angular errors of the perturbed cursor trajectory rela-

tive to cursor-to-target directions, as well as the angular errors of the intuitive-mapping whiskers
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Figure 4.4: Subjects compensate for sen-

sory feedback delays while controlling a

BMI. (a) The visuomotor latency expe-

rienced by a subject in our BMI system

was assessed by measuring the elapsed

time between target onset and the first

significant (p < 0.05) decrease in angu-

lar error. If that first decrease was de-

tected τ + 1 timesteps following target

onset, we concluded that the visuomo-

tor latency was at least τ timesteps (red

dashed lines). For both subjects, the first

significant difference was highly signifi-

cant (**: p < 10−5, one-sided Wilcoxon

test with Holm-Bonferroni correction for

multiple comparisons; n=5,908 trials;

monkey C: n=4,578 trials). (b) Concep-

tual illustration of a single motor com-

mand (black arrows) shifted to originate

from positions lagged relative to the cur-

rent cursor position (open circle). In

this example, the command points far-

ther from the target as it is shifted to orig-

inate from earlier cursor positions. (c)

Motor commands pointed closer to the

target when originating from the current

cursor position (zero lag) than from out-

dated (positive lag) cursor positions that
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could be known from visual feedback alone (**: p < 10−5, one-sided Wilcoxon test; monkey

A: n=33,660 timesteps across 4,489 trials; monkey C: n=31,214 timesteps across 3,639 trials).

Red lines indicate subjects’ inherent visual feedback delays from a. Shaded regions in a and c

(barely visible) indicate ± SEM.

on the same trials (Fig. 4.5b). Throughout the perturbation experiments, cursor errors decreased,

representative of behavioral improvements and an internal model that adapts to compensate for

the perturbation (Fig. 4.5c, black trace). In parallel, the intuitive-mapping whiskers, which had

relatively low angular errors at perturbation onset, increased in error throughout experiments

(Fig. 4.5c, red trace). This finding suggests an adaptive internal model that gradually becomes

inconsistent with the intuitive BMI mapping.
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Figure 4.5: Evidence of an in-

ternal model revealed through

perturbation of the BMI map-

ping (a) The first trial follow-

ing perturbation onset from

a representative. The cur-

sor trajectory (black line) was

displayed to the subject on-

line. “Whiskers” (red lines)

show how the cursor would

have progressed under the in-

tuitive BMI mapping. (b)

Aiming errors assessed at a

single timestep from the trial

in a. According to the intu-

itive BMI mapping (red), the

cursor would have hit the tar-

get and thus the error assessed

at this timestep is 0◦. Un-

der the perturbed BMI map-

ping, the cursor (black) would

have missed the target by 51◦.
(c) Angular errors through the

intuitive (red) and perturbed
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(black) BMI mappings, averaged across perturbation experiments. Angular errors through the

intuitive mapping were computed using the last segment of each whisker, as in b. Angular errors

were averaged within a trial, then averaged in non-overlapping blocks of 16 trials. Trial numbers

correspond to the last trial included when averaging across trials. Shaded regions indicate +/-

SEM (n = 20 experiments).

4.2.2 Internal model mismatch explains the majority of subjects’ control

errors

The BMI mapping provides one relevant, low-dimensional projection of the high-dimensional

neural activity, which gives the cursor movements displayed to the subject. With evidence that

subjects use an internal model during closed-loop BMI control (Sections 4.2.1 and 4.2.1), we

asked whether mismatch between an internal model and the actual BMI mapping could explain

the subject’s moment-by-moment aiming errors. This requires identifying the subject’s internal

model, which could reveal a different projection of the high-dimensional neural activity, repre-
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senting the subject’s internal beliefs about the cursor state. Because of the closed-loop nature

of the BMI paradigm, the subject continually updates motor control decisions as new visual

feedback of the cursor becomes available. To resolve these effects, the internal model needs to

operate on a timescale of tens of milliseconds (in this case, a single timestep of the BMI system)

on individual experimental trials. The extraction of such a rich internal model has been difficult

prior to this study due to the lack of an appropriate statistical framework.

To overcome this limitation, we developed an internal model estimation (IME) framework in

(see Section 4.4.8), which extracts, from recorded population activity, a fully parameterized inter-

nal model along with a moment-by-moment account of the internal prediction process (Fig. 4.6a).

In the IME framework, the subject internally predicts the cursor state according to:

x̃t = Ãx̃t−1 + B̃ut + b̃ (4.2)

where x̃t is the subject’s internal prediction about the cursor state (position and velocity), ut

is a vector of recorded neural activity, and Ã, B̃, and b̃ are the parameters of the subject’s

internal model. This form of the internal model was chosen to be analogous to the BMI mapping

from Eq. 4.1 so that the actual BMI mapping lies within the family of internal models that we

consider. Additionally, this formulation aligns with recent studies of skeletomotor (Shadmehr

and Krakauer, 2008) and oculomotor (Frens and Donchin, 2009) control, and a vast literature of

control theory (Anderson and Moore, 1990).

The primary concept of the IME framework is that, at each timestep, the subject internally

predicts the current cursor state by recursively applying Eq. 4.2 (starting from the most recently

available sensory feedback) and generates neural activity consistent with aiming straight to the

target relative to this internal prediction (see Section 4.4.8 and Fig. 4.20). At each timestep, t,

IME extracts the entire time-evolution of the subject’s internal state prediction using Eq. 4.2 as

an internal forward model. This evolution can be visualized in the form of a whisker (Fig. 4.6b)

that begins at the cursor position of the most recently available feedback and unfolds according

to the extracted internal model. At each new timestep, the subject forms a new whisker that

incorporates newly received visual feedback. If the internal model exactly matches the BMI

mapping, the subject’s whiskers would exactly match the cursor trajectory.
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The central hypothesis in this study is that movement errors arise from a mismatch between

the subject’s internal model of the BMI and the actual BMI mapping. The alternative to this hy-

pothesis is that the subject’s internal model is well-matched to the BMI mapping, and movement

errors result from other factors, such as “noise” in the sensorimotor system or subjects disen-

gaging from the task. Our key finding is that recorded neural commands were markedly more

consistent with the task goals when interpreted through subjects’ internal models than when

viewed through the BMI mapping (Fig. 4.6c). Subjects’ internal models deviated from the actual

BMI mappings such that control errors computed through extracted internal models were sub-

stantially smaller than actual cursor errors: extracted internal models explained 70% and 59% of

cursor movement errors for monkeys A and C, respectively.

To avoid circularity, extracted internal models were evaluated only on trials that were held

out during model fitting (see Section 4.4.10). In particular, when the neural command ut is used

to compute the movement error at timestep t, that neural command had not been seen previously

(i.e., it was not used when fitting the internal model, when estimating the subject’s internal cursor

state prediction, when calibrating the BMI mapping, nor when determining the current position

of the actual BMI cursor). Although this finding does not preclude other factors (e.g., spiking

noise or subject disengagement) from contributing toward movement errors, it does suggest their

contribution is substantially smaller than previously thought, due to the large effect of internal

model mismatch.

That a majority of cursor errors can be explained by mismatch of the internal model is not

to say that control through the BMI mapping was poor–in fact control was proficient and stable

(Fig. 4.2and Fig. 4.3). Rather, extracted internal models predicted movements that consistently

pointed straight to the target, regardless of whether the actual cursor movements did (Fig. 4.7a)

or did not (Fig. 4.7b and Fig. 4.8). On most trials, BMI cursor trajectories proceeded roughly

straight to the target (Fig. 4.7a). On these trials, IME whiskers aligned with actual cursor move-

ments, resulting in small errors through both the BMI mapping and the extracted internal model.

In a smaller subset of trials, actual cursor movements were more circuitous and thus had rel-

atively large errors. Previously, the reason behind these seemingly incorrect movements was

unknown, and one possibility was that the subject simply disengaged from the task. When in-
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Figure 4.6: Mismatch between the internal

model and the BMI mapping explains the

majority of the subjects’ cursor movement

errors.(a) At each timestep, the subject’s in-

ternal state predictions (x̃t−2, x̃t−1, x̃t) are

formed by integrating the visual feedback

(xt−3) with the recently issued neural com-

mands (ut−2,ut−1,ut) using the internal

model (Ã, B̃, b̃). We defined cursor states

and internal state predictions to include

components for position and velocity (i.e.,

xt = [pt;vt], x̃t = [p̃t; ṽt]). (b) Cursor

trajectory (black line) from a BMI trial that

was not used in model fitting. Red whisker

shows the subject’s internal predictions of

cursor state as extracted by IME. The crit-

ical comparison is between the actual cur-

sor velocity (vt; black arrow) and the sub-

ject’s internal prediction of cursor velocity

(ṽt; red arrow). (c) Cross-validated angular

aiming errors based on IME-extracted in-

ternal models are significantly smaller than

cursor errors from the BMI mapping (**:

p < 10−5, one-sided Wilcoxon test; mon-

key A: n= 5,908 trials; monkey C: n=4,577

trials). Errors in b are from a single timestep

within a single trial. Errors in c are averaged

a

u
t-1

u
t

x
t-3visual

feedback

past current
neural commands

internal state predictions

A~

B~B~

u
t-2

A~

B~

A~ x
t-2

~

high-dimensional

low-dimensional

}

}x
t-1

~ x
t

~

b

start

target

 p
t

 p
t−3

 p
t  v

t

 v
t

 ~  ~

0  angular error
o

40  angular error
o

c

0

2

4

6

8

cursor internal
model

Monkey A
ab

so
lu

te
 a

n
g

u
la

r 
er

ro
r 

(d
eg

re
es

)

**

0

2

4

6

8

cursor internal
model

Monkey C

ab
so

lu
te

 a
n

g
u

la
r 

er
ro

r 
(d

eg
re

es
) **

across timesteps and trials. Errors in b and c incorporate temporal smoothing through the defi-

nition of the BMI mapping and the internal model, and are thus not directly comparable to the

errors shown in Fig. 4.4c, which are based on single-timestep velocity commands needed for

additional temporal resolution (see Section 4.4.12). Error bars (barely visible) indicate ± SEM.

terpreted through the extracted internal model, however, neural activity during these circuitous

trials appears correct, suggesting that the subject was engaged but was acting under an internal

model that was mismatched to the BMI mapping (Fig. 4.7b and Fig. 4.8). In other words, when

armed with knowledge of the subject’s internal model, outwardly irrational behavior (i.e., cir-

cuitous cursor movements) appears remarkably rational. Across all trials, the majority of neural

activity patterns had low or zero error as evaluated through extracted internal models, regardless

of whether errors of the actual cursor movements (i.e., through the BMI mapping) were large or

small (Fig. 4.7c and Fig. 4.9).
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Figure 4.7: Neural activity appears

correct through the internal model,

regardless of how the actual cursor

moved. (a) Typical trial in which

the cursor followed a direct path

(black) to the target. IME whiskers

(red) also point straight to the tar-

get. (b) Trial with a circuitous cur-

sor trajectory. IME whiskers point

straight to the target throughout

the trial, regardless of the cursor
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movement direction (same color conventions as in a). (c) Timestep-by-timestep distribution of

BMI cursor and internal model errors. Neural activity at most timesteps produced near-zero

error through the internal model, despite having a range of errors through the BMI mapping.

Figure 4.8: IME whiskers consistently point to the target regardless of cursor movement direc-

tion. Additional example cursor trajectories (black) are overlaid with cross-validated predictions

from extracted internal models (red whiskers), as in Fig. 4.7a,b. Each trial was held-out when

fitting the internal model used to generate its whiskers. Each whisker shows the subject’s inter-

nal belief of how the cursor trajectory evolved, beginning from the most recently available visual

feedback of cursor position (black dots) to the subject’s up-to-date prediction of the current cur-

sor position (red dots). The final whisker segments (red line beyond each red dot) represent the

subject’s intended velocity command. Trials were selected to highlight differences between ex-

tracted internal models and the BMI mappings. In these trials, black cursor trajectories at times

appear irrational with respect to targets, yet internal models reveal whiskers that consistently

point toward the targets. Averaged cursor and internal model errors within each of these trials

are shown in Fig. 4.9.
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Figure 4.9: Errors from trials in Figure 4.8 highlighted on the distribution of errors across trials.

Letters correspond to trials from Figure 4.8. Format is similar to that of Fig. 4.7c, but there

histograms were constructed from single-timestep errors. Here, errors were averaged across all

timesteps within each trial, allowing for direct correspondence to the trials shown in Figure 4.8.

Data are from monkey A only. Monkey C data are qualitatively similar (data not shown).
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Given a single internal model, how can some patterns of neural activity result in whiskers

aligned to the cursor trajectory, while others patterns produce whiskers that deviate from the

cursor trajectory? This phenomenon is a mathematical consequence of the mapping from high-

dimensional neural activity patterns to low-dimensional cursor states (Fig. 4.10). Given a mis-

matched BMI mapping (black lines) and internal model (red lines), a subset of activity patterns

(gray line) will produce identical movements through both the BMI mapping and the internal

model. Other activity patterns will produce different movements through the BMI mapping and

the internal model. When cursor trajectories were circuitous, it was not uncommon for some

whiskers to match the actual cursor movement while others did not, even within the same trial

(Fig. 4.7b). In trials with neural activity patterns resulting in large discrepancies between internal

model and BMI mapping outputs, internal models explained 88% and 71% of cursor movement

errors for monkeys A and C, respectively (Fig. 4.11). Even in trials with neural activity patterns

resulting in similar outputs through the internal model and the BMI mapping, internal models

still explained 27% and 35% of errors for monkeys A and C, respectively.

To gain more intuition into the mismatch between the internal model and the BMI mapping,

we visualized the manner in which each translates neural activity into cursor movement. Both

the internal model and the BMI mapping can be visualized as a collection of pushing vectors.

For the BMI mapping, each pushing vector describes how a recorded spike from a particular unit

will drive the BMI cursor (Fig. 4.12a). Mathematically, each BMI mapping pushing vector is

the velocity component of a particular column of the B matrix from Eq. 4.1. For the internal

Figure 4.10: Low-dimensional illustration comparing an in-

ternal model to the BMI mapping. A hypothetical internal

model (red) and BMI mapping (black) relate 2D neural ac-

tivity to a 1D velocity output. Each contour represents ac-

tivity patterns producing the same velocity, v, through the

internal model (red) or BMI mapping (black). Because of

internal model mismatch, many patterns result in different

outputs through the internal model and the BMI. However,

some patterns result in the same output through both the in-

ternal model and the BMI (gray line). Here we illustrate us-

ing a 2D neural space and 1D velocity space. In experiments
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with q-dimensional neural activity and 2D velocity, activity patterns producing identical veloci-

ties through both the internal model and the cursor span a (q − 4)-dimensional space.
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Figure 4.11: Internal models explain cursor errors across all types of trials. Using the same data

as in Fig. 4.7c, we computed the timestep-by-timestep angles between velocities resulting from

the BMI mapping and cross-validated velocities predicted from the internal model. We then

defined a within-trial internal model mismatch to be the average of these angular differences.

Trials were binned across the range of these mismatch values, and across the trials in each bin we

computed the percentage of errors explained by the internal model to be (average BMI mapping

error - average internal model error)/(average BMI mapping error). Shaded regions indicate SEM

(Bootstrap).

model, each pushing vector describes how the subject internally believes a single spike from

a particular unit will drive the BMI cursor (Fig. 4.12b). Each internal model pushing vector

is the velocity component of a column of the extracted B̃ matrix from Eq. 4.2. When looking

across all units, there was no consistent structure in the differences between pushing vectors

through the internal model versus through the BMI mapping (Fig. 4.12c). Some units’ pushing

vectors were similar through the BMI mapping and the subject’s internal model, whereas other

units’ pushing vectors showed substantial differences. Despite these differences, some patterns

of neural activity resulted in similar velocities through the internal model and the BMI mapping

(Fig. 4.7a), whereas other patterns resulted in different velocities (Fig. 4.7b). Analyzing the high-

dimensional population activity enabled the identification of these effects, which could not have

been revealed by analyzing the low-dimensional behavior or individual units in isolation.

75



4.2.3 Internal model mismatch explains limitations in speed dynamic range

A major limitation in BMI performance is the ability to control cursor speed (Gilja et al., 2012;

Golub et al., 2014). Gilja et al. (2012) and Golub et al. (2014) have proposed solutions to improve

control of BMI speed (in particular, with respect to stopping the BMI cursor at targets). However,

it is still an open question as to why BMI speed control is deficient in the first place. In addition to

explaining the subjects’ aiming errors, we asked whether mismatch between the internal model

and BMI mapping could also explain subjects’ difficulty in controlling cursor speed. Using

the extracted internal model, we could compare the subject’s intended speed (from the internal

model) to the speed of the actual BMI cursor at each timestep. We found that low intended speeds

were systematically overestimated, and high intended speeds were systematically underestimated

by the BMI mapping (Fig. 4.13a). Furthermore, we discovered that the subjects intended to hold

the cursor steadier during the initial hold period and move the cursor faster during the movement

than what occurred during experiments (Fig. 4.13b). Note that we make no assumptions about

movement speed when extracting the internal model or when assessing the intended speed. These

systematic differences between intended and actual cursor speeds indicate that internal model

mismatch limits realizable dynamic range of BMI movement speeds.

To gain insight into this speed mismatch, we can use extracted internal models to examine

the discrepancies between intended and actual speeds at the level of individual units and on the

timescale of a single 33-ms timestep (Fig. 4.14). The actual and intended cursor velocities at a

particular timestep result from interpreting a recorded spike count vector (Fig. 4.14a) through the

Figure 4.12: A unit-by-unit comparison of the subject’s internal model and the BMI mapping.

(a) The BMI mapping parameter B from Eq. 4.1 describes how each neuronal unit actually drove

the BMI cursor. Each 2D column in the velocity portion (lower two rows) of B corresponds to a

particular unit and can be visualized as a pushing vector describing the direction and magnitude

by which a single spike from that unit would push the cursor according to the BMI mapping. Each

unit’s pushing vector is given a unique color. (b) The internal model parameter B̃ from Eq. 4.2

describes how the subject believes each neuronal unit drives the cursor. As in a, each 2D column

of the velocity portion of B̃ corresponds to a particular unit. Pushing vectors corresponding to

the same unit in a and b are given the same color. (c) Unit-by-unit comparison of pushing vectors

from the BMI mapping (circles) and internal model (squares) from a. Parameters visualized in

a-c were taken from representative session A010609.
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BMI mapping and through the subject’s internal model, respectively. The effect of the recorded

spike counts on the actual velocity is computed by first rescaling each BMI mapping pushing

vector (Fig. 4.12a) by the number of spikes recorded from the corresponding unit (Fig. 4.14a)

and then summing these spike-count-weighted pushing vectors (Fig. 4.14b,c, left). The pushing

vectors from the subject’s internal model (Fig. 4.12b), when rescaled by the same recorded spike
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Figure 4.13: Internal model mismatch limits the dynamic range of BMI cursor speeds. (a) BMI

cursor speeds across the range of intended (i.e., internal model) speeds. At low intended speeds,

BMI speeds were higher than intended, whereas for mid-to-high intended speeds, BMI speeds

were lower than intended. Shaded regions indicate ± SEM. (b) During the hold period prior

to target onset, intended speeds were significantly lower than those produced through the BMI

mapping. During movement, intended speeds were significantly higher than those produced

through the BMI. Error bars indicate ± SEM (**: p < 10−5, one-sided Wilcoxon test; monkey

A: n = {5,006, 5,908} trials; monkey C: n = {3,008, 4,578} trials). In a and b internal models

were used to predict intended speed on trials not used during model fitting.
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counts and summed, represent the subject’s intended movement velocity (Fig. 4.14b,c, right).

The example spike count vector in Fig. 4.14 was recorded mid-movement, when intended

speed is expected to peak. Here, intended speed (i.e., the magnitude of intended velocity) is

greater than the actual speed through the BMI mapping (Fig. 4.14c), consistent with our finding

that the BMI mapping tends to underestimate high intended speeds (Fig. 4.13a, right half of each

panel; Fig. 4.13b, “movement” bars). This difference between intended and actual speed arises

because the pattern of activated units in the example spike count vector had similar pushing

directions through the internal model, resulting in a coordinated push. Through the BMI map-

ping, however, the same spike count activated a more diffuse set of pushing directions, resulting

in a “co-contraction” of units that push against each other more than they did through the in-

ternal model. This single-timestep example and our aggregate findings from Fig. 4.13 suggest

that the longstanding deficiencies in BMI speed control may be a consequence of internal model

mismatch.

4.2.4 Perturbations drive internal model adaptation

A key feature of an internal model is its ability to adapt. Arm reaching studies have demonstrated

behavioral evidence of internal model adaptation (Shadmehr and Mussa-Ivaldi, 1994; Thorough-

Figure 4.14: A unit-by-unit example of internal model mismatch limiting cursor speed dynamic

range. (a) Spike counts during a single example timestep across 22 units. Circles indicate a zero

spike count. This example timestep was recorded mid-movement, when intended speed should

be at its maximum. (b) Pushing vectors from Fig. 4.12 scaled by the spike counts shown in a.

Dashed arrows indicate the direction and magnitude of the velocity components of offset vectors

b (left) and b̃ (right), which are meant to effectively zero-out the velocity expected when neu-

rons fire at their baseline rates. Straight-to-target directions (green stars) are shown relative to

the current cursor position (left) or the internal-model predicted current cursor position (right).

(c) Each resultant pushing vector (arrows) is the sum of the offset term and all weighted pushing

vectors. This vector represents the contribution of the single-timestep spike count from a toward

the cursor (left) or internal model-predicted (right) velocity, i.e., without considering smooth-

ing across previous time steps. Consistent with aggregate findings in Fig. 4.13b (“movement”

bars), internal-model predicted speed (red arrow in right panel) is higher than the speed pro-

duced through the BMI mapping (black arrow in left panel). Consistent with aggregate findings

in (Fig. 4.6c), the internal-model predicted velocity (red arrow in right panel) points closer in

direction to the target (green star) than does the actual cursor velocity (black arrow in left panel).

79



a

0
1
2
3
4
5

neuronal unit

# 
sp

ik
es

 r
ec

or
de

d

b

−100 0 100

−100

0

100

x−velocity (mm/s)

y
−

v
el

o
ci

ty
 (

m
m

/
s)

BMI mapping

−100 0 100

−100

0

100

x−velocity (mm/s)

y
−

v
el

o
ci

ty
 (

m
m

/
s)

internal model

c

−200 0 200

−200

0

200

x−velocity (mm/s)

y
−

v
el

o
ci

ty
 (

m
m

/
s)

BMI mapping

−200 0 200

−200

0

200

x−velocity (mm/s)

y
−

v
el

o
ci

ty
 (

m
m

/
s)

internal model

Figure 4.14

man and Shadmehr, 2000; Joiner and Smith, 2008; Taylor et al., 2014). Behavioral learning

has also been demonstrated in the context of BMIs (Taylor et al., 2002; Carmena et al., 2003;
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Jarosiewicz et al., 2008; Ganguly and Carmena, 2009; Chase et al., 2012; Sadtler et al., 2014).

While these BMI studies suggest that subjects adapt their internal model to better match the BMI

mapping, a direct assessment has been difficult without access to the subject’s internal model.

With the ability to extract a subject’s internal model, here we asked whether extracted internal

models adapt in accordance with perturbations to the BMI mapping (Fig. 4.15). In Monkey A

experiments, an initial block of trials under an intuitive BMI mapping was followed by a block

of trials under a perturbed BMI mapping (all data analyzed prior to this section was recorded

during intuitive blocks). The perturbed BMI mapping effectively rotated the pushing directions

of a subset of the recorded units, such that the global effect resembled a visuomotor rotation.

Previous studies have shown that perturbations of this type can be learned by monkeys (Chase

et al., 2012; Wise et al., 1998; Paz et al., 2005).

For each experiment, we interpreted recorded population activity through the intuitive and

perturbed BMI mappings, as well as through two instances of the subject’s internal model: one

extracted from trials late in the intuitive block and a second extracted from trials late in the per-

turbation block (Fig. 4.15a). We could then quantify changes in the extracted internal models

and assess which BMI mapping or internal model was most consistent with the neural activity,

relative to task goals. To avoid circularity, trials used to evaluate the BMI mappings and internal

models were not used when extracting the internal models nor when calibrating the BMI map-

pings. Specifically, a late intuitive (LI) and late perturbation (LP) internal model was extracted

from the 48 trials preceding the last 16 trials of each intuitive and perturbation block, respec-

tively. Angular errors for the BMI mappings and internal models were computed over the last 16

(held-out) trials from the intuitive and perturbation blocks (referred to as LI trials and LP trials,

respectively). In the following comparisons, note that we distinguish between LI internal model

and LI trials (i.e., the LI internal model was not fit to the LI trials, but rather it was fit to the 48

preceding trials). Similarly, we distinguish between LP internal model and LP trials.

Intuitive BMI mapping errors describe the actual cursor performance during LI trials (solid

blue bar; analogous to cursor errors in Fig. 4.6c), and how that mapping would have performed

had it been in effect during the LP trials (hatched blue bar). Similarly, perturbed BMI mapping

errors describe the actual cursor performance during LP trials (hatched red bar), and how that
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mapping would have performed had it been in effect during the LI trials (solid red bar; i.e., the

expected performance under the perturbed BMI mapping if the subject does not learn). Behav-

ioral learning was evident in that errors through the perturbed BMI mapping were relatively large

in LI trials (solid red bar) and decreased substantially by LP trials (hatched red bar; Fig. 4.15b).

A detailed characterization of this behavioral learning can be found in Chase et al. (2012). Con-

sistent with our central hypothesis, mismatch between the internal model and the BMI mapping

explained a majority of movement errors (Fig. 4.15c), both in LI trials (solid blue vs solid green

bars; analogous to Fig. 4.6c) and in LP trials (hatched red vs hatched purple bars).

Our key finding in this analysis is that extracted internal models did in fact adapt in a manner

consistent with the BMI perturbations (Fig. 4.15d). Specifically, the neural activity on LI trials

(held-out) had relatively small errors when interpreted through the LI internal model (solid green

bar), but significantly larger errors when interpreted through the LP internal model (solid purple

bar). Similarly, the neural activity on LP trials (also held-out) had relatively large errors when

interpreted through the LI internal model (hatched green bar), but significantly smaller errors

when interpreted through the LP internal model (hatched purple bar). Had the subject’s internal

model not adapted, or if the adaptation was not reflected in the extracted internal model, we

would expect the LI and LP internal models to produce similar errors on a given set of neural

activity. Thus we found that, rather than being static entities, the extracted internal models were

dynamic, and their changes were consistent with the perturbations to the BMI mapping.

4.2.5 Controls for validation of the IME framework

The explanatory power of extracted internal models can be decomposed into (i) temporal struc-

ture in the low-dimensional kinematics (ṽt) that is captured by Ã from Eq. 4.2, and (ii) hidden

structure in the high-dimensional neural activity (ũt) that is captured by B̃ and b̃ from Eq. 4.2.

Temporal structure in kinematics (i) can explain errors in that internal predictions of cursor state

can be informed by velocity feedback and temporal smoothness can be learned across internal

velocity predictions within a single whisker to mitigate the effects of spiking noise. Hidden struc-

ture in the high-dimensional neural activity (ii) can explain errors if there is a particular mapping

from neural activity to kinematics (B̃) that reveals straight-to-target aiming that is not apparent
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Figure 4.15: Extracted internal

models capture adaptation to per-

turbations. (a) Held-out neural

activity from late intuitive (LI)

and late perturbation (LP) trials

(solid and hatched bars, respec-

tively) was interpreted through

the intuitive (blue) and pertur-

bation (red) BMI mappings, and

through the LI (green) and LP

(purple) internal models. Error

bars indicate ± SEM (n = 576
trials). Data are replicated in b-d

to highlight key comparisons (**:

p < 10−5, two-sided Wilcoxon

test). (b) Behavioral learning

is evident in the difference be-

tween the expected errors due

to the perturbations (LI trials)

and the actual errors after learn-

ing (LP trials). (c) Consistent

with our main result in Fig. 4.6c,

the subject’s neural activity is

more appropriate under the cur-

rent internal model than under

a

block of trials
late intuitive (LI) late perturbation (LP)
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the current BMI mapping, both during LI and LP trials. (d) The subject’s internal model adapts

in a manner consistent with the applied perturbation. During LI trials, errors are significantly

smaller through the LI internal model, relative to the LP internal model. During LP trials, this

trend is reversed, and errors are significantly smaller through the LP internal model.

through the BMI mapping (B). We devised an IME variant, termed “neural-only” IME, which

extracts internal models that are constrained to ignore temporal structure (i) while still capturing

structure in the high-dimensional neural activity (ii) (see Section 4.4.9).

“Neural-only” internal models explain 54% and 46% of unsmoothed cursor errors in monkeys

A and C, respectively (Fig. 4.16), demonstrating that the explanatory power of IME-extracted in-

ternal models comes primarily from structure in the high-dimensional neural activity. The large

difference between cursor errors and neural-only internal model errors (solid arrow in Fig. 4.16)

represents the explanatory power of the structured high-dimensional neural activity without ap-

plying any temporal smoothing and without leveraging visual feedback of cursor velocity. The
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smaller difference between errors through the neural-only internal model and the unconstrained

internal model (dashed arrow in Fig. 4.16) demonstrates the additional explanatory power gained

by incorporating velocity feedback and temporal smoothing.

To ensure that the effects we identified in the high-dimensional neural activity were real, we

performed a control analysis by shuffling the neural activity to destroy high-dimensional struc-

ture, but in a manner that preserved the cursor movements through the BMI mapping. Extracted

internal models could no longer explain cursor errors in these shuffled datasets, indicating that

IME does not identify effects when they do not exist in the data (Fig. 4.17). We applied neural-

only IME to datasets in which we shuffled the neural activity in the null-space of B from the
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Figure 4.16: IME’s explanatory power comes primarily from structure in the neural activity.

To determine the relative contribution of structure in the high-dimensional neural data toward

the explanatory power of IME, we devised a constrained variant of IME that relies entirely on

the high-dimensional neural activity to generate whiskers. Because neural-only IME does not

incorporate temporal smoothing of velocity predictions, it cannot be directly compared to the

BMI mapping via the cursor error presented in Fig. 4.6c, which was computed using smoothed

cursor velocities. To enable fair comparison with the BMI mapping, we computed cursor errors

using single-timestep (unsmoothed) velocity commands (see Section 4.4.9). For reference, we

also include the error from unconstrained IME (“neural + dynamics”; replicated from Fig. 4.6c).

Error bars indicate ± SEM (**: p < 10−5, one-sided Wilcoxon test; monkey A: n=5,908 trials;

monkey C: n=4,577 trials)
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Figure 4.17: IME does not identify structure in the high-dimensional neural activity when no

such structure exists. “Neural-only” internal models extracted from shuffled datasets result in

errors similar to or even larger than those from the BMI cursor. Error bars indicate ± SEM (**:

p < 10−5, one-sided Wilcoxon test; monkey A: n=5,908 trials; monkey C: n=4,577 trials).

BMI mapping in Eq. 4.1, while preserving the neural activity in its row-space. By design, these

shuffled datasets result in exactly the same velocities through the BMI mapping (“unsmoothed

cursor” bars here exactly match those in Fig. 4.16). However, any remaining structure in the

high-dimensional neural activity is scrambled and as such cannot be leveraged by IME to ex-

plain errors. This result further shows that the explanatory power of neural-only IME (as shown

in Fig. 4.16) comes entirely from structure in the high-dimensional neural activity.

We also explored a variety of approaches to modeling the subject’s internal tracking process

and found that models demonstrated similarly high degrees of explanatory power as long as

they could capture high-dimensional structure in the neural activity. The central principles of

the IME framework are that the subject internally predicts the current cursor position based

on an internal model, and the subject aims straight to the target from that predicted position

through the internal model. We asked whether we could account for the data using a simpler form

of the internal model, which incorporates straight-to-target aiming without internal prediction.

In this alternative model, the subject aims straight to the target from the most recent cursor
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position available from visual feedback, rather than from an internal forward prediction of cursor

position. As in IME, this “aim-from-feedback” approach involves an internal model that need

not match the BMI mapping. We fit this model via linear regression using the same feedback

delays determined from the BMI behavior (τ from Fig. 4.4a). At timestep t, the intended aiming

direction was assumed to be straight to the target center from the feedback cursor position, pt−τ ,

and intended speed was taken to match that of the single-timestep velocity command through

the BMI mapping, vraw
t . These aiming directions were regressed against single-timestep spike

counts to yield an internal model.

If subjects intend to drive the cursor from the position given by the most recent visual feed-

back, internal models fit according to this aim-from-feedback principle should predict intended

velocities that point closest to targets when originating from feedback cursor positions (i.e.,

cursor positions that lag the recorded neural activity by τ timesteps). This was not the case.

We found that internal models fit according to the aim-from-feedback principle result in cross-

validated velocity commands that point closest to targets when originating from cursor positions

more recent than those from the most recently available visual feedback (Fig. 4.18). This finding

is consistent with subjects aiming straight to the target from an up-to-date internal prediction of

the current cursor position.

Given this evidence that subjects perform some sort of internal tracking, we implemented a

number of different internal models to dissect the exact form of that tracking process. Specifi-
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Figure 4.18: A simplified alternative internal model that incorporates straight-to-target aiming

without internal tracking is not consistent with the data. Shaded regions (barely visible) indicate

± SEM (monkey A: n=33,660 timesteps across 4,489 trials; monkey C: n=31,214 timesteps

across 3,639 trials).
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cally, we implemented internal models that perform no tracking (aim-from-feedback, presented

here), tracking without previously issued motor commands (data not shown), and tracking with

previously issued motor commands (main results), among others. Empirically, these internal

models all yield similar cross-validated errors. The explanation for this similarity is that the

different formulations identify similar high-to-low dimensional mappings that capture the sub-

ject’s intent to move straight to the target, and the direction of these intended commands tends

to dominate any effect of the position from which those commands originate. This reasoning

is consistent with our finding that cursor errors are better explained by structure in the high-

dimensional neural activity than by temporal structure in the cursor kinematics (Fig. 4.16). We

ultimately chose to incorporate tracking with previously issued motor commands into the main

IME framework because doing so results in internal models that perform as well as any internal

model we tested and, and because this formulation is consistent with a number of prominent

studies evidencing the use of internally copied motor commands for forward-model based motor

control (Sommer and Wurtz, 2002; Scott, 2004; Miall et al., 2007; Crapse and Sommer, 2008;

Shadmehr and Krakauer, 2008; Sommer and Wurtz, 2008; Azim et al., 2014).

4.3 Discussion

In this work, we asked what gives rise to behavioral errors during feedback motor control. In

a BMI paradigm, we hypothesized that a mismatch between the subject’s internal model and

the actual BMI mapping could explain errors in BMI cursor movement. To assess this, we first

found evidence that subjects compensate for sensory feedback delays. Then, we reinterpreted

the neural population activity recorded during closed-loop BMI control in terms of a rich in-

ternal model that operates on a timescale of tens of milliseconds. We found (i) that subjects’

neural activity was often correct according to the internal model even when cursor movements

were circuitous (thereby explaining 65% of cursor errors), and (ii) that subjects intended to hold

the cursor steadier during initial hold periods and to drive the cursor faster during movements,

relative to observed behavior. Furthermore, when the BMI mapping was perturbed, the subject’s

internal model changed in a manner consistent with the new BMI mapping.
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We chose to capture the subject’s internal model using a forward model framework (Fig. 4.6a)

because it is both highly interpretable and consistent with a large body of behavioral and com-

putational studies (Shadmehr and Krakauer, 2008; Frens and Donchin, 2009). Our results do not

preclude the use of other types of internal models (e.g., inverse models (Ghasia et al., 2008)),

nor do they imply that internal model computations are necessarily carried out in M1. Studies

have suggested that motor internal models might be stored in one or more brain areas, including

possibly posterior parietal cortex (Mulliken et al., 2008b; Shadmehr and Holcomb, 1997), dorsal

premotor cortex (Shadmehr and Holcomb, 1997) or the cerebellum (Shadmehr and Holcomb,

1997; Pasalar et al., 2006; Miall et al., 2007; Lisberger, 2009). As a motor command is issued

to the muscles, it is believed that an internal copy of the command, often referred to as effer-

ence copy or corollary discharge, is sent in parallel to an internal forward model, which predicts

the command’s sensory consequences (Crapse and Sommer, 2008; Schneider et al., 2014; Azim

et al., 2014). We do not claim to have direct access to the efference copy signal in this study.

Rather, the IME framework treats the recent history of M1 activity as a proxy for the subject’s

efference copy signals. This is reasonable because the actual efference copy signals and the cor-

responding M1 activity both represent the same intended motor commands. We directly observe

the population activity in M1, and thus if that activity was shaped by an upstream internal model,

we can use the M1 activity to infer that internal model.

The insights gained in this study were made possible because we monitored the subject’s

high-dimensional neural activity. Differences between the high-to-low dimensional mappings in

the subject’s internal model (Eq. 4.2) and the BMI mapping (Eq. 4.1) meant that neural activity

that was consistently correct under the internal model sometimes resulted in aberrant behav-

ior through the BMI. We would not have been able to observe or explain this phenomenon by

analyzing the BMI cursor movements in isolation. For example, had we repeated this study re-

placing all instances of neural activity (i.e., the ut in Eq. 4.2) with actual cursor velocities (or

analogously, with actual hand velocities from an arm reaching task), IME would be limited to

predicting the subject’s velocity intent to be a scaled and rotated (in two-dimensions) version

of the actual velocity. Access to the high-dimensional neural activity enabled the identification

of the subject’s intended movements without constraining them to have a consistent relationship
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with actual movements.

Although internal models can adapt to better match the BMI mapping (Fig. 4.15d), there was

substantial mismatch between the subject’s internal model and the BMI mapping, even when

control was proficient during the intuitive blocks (Fig. 4.6c and Fig. 4.15c, solid bars). A way to

reconcile these two findings is that, in contrast to the frequent movement errors experienced after

the BMI mapping was perturbed, there was a relative paucity of errors during the intuitive blocks.

As a result, there may not have been sufficient pressure to improve upon a “good enough” internal

model (Loeb, 2012). Had the subject been given more experience with the same BMI mapping

across multiple days (Ganguly and Carmena, 2009), the internal model may have converged to

the BMI mapping. Nevertheless, our findings indicate that the subject’s learning process may

be a key limitation in BMI performance (Sadtler et al., 2014). It may be possible to overcome

these limitations in the subject’s neural adaptation process through complementary innovations

in designing BMI mapping (Shenoy and Carmena, 2014). Calibration procedures that better

capture the subject’s internal model during closed-loop control could lead to higher-performance

BMI systems and might explain recent advances demonstrated by (Gilja et al., 2012). Further

improvements in performance might be possible by setting the BMI mapping to the subject’s

internal model.

Prior beliefs, and their role in sensation and behavior, have been the focus of many studies,

including those on visual perception (Komatsu, 2006; Berkes et al., 2011; Kersten et al., 2004),

perceptual decision-making (Ma and Jazayeri, 2014), and sensorimotor learning (Körding and

Wolpert, 2004; Turnham et al., 2011). Our work provides a means for extracting a rich rep-

resentation of prior beliefs (i.e., the internal model) that can combine past sensory input with

multi-dimensional neural processes to drive moment-by-moment motor control decisions. We

found that outwardly aberrant behavior and behavioral limitations could be explained by taking

into account the subject’s prior beliefs. By recording simultaneously from multiple neurons and

developing the appropriate statistical algorithms, it may be possible to extract similarly rich prior

beliefs in other systems.
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4.4 Methods

4.4.1 Neural recordings

Two male rhesus macaques (Maccaca mulatta) were each implanted with a 96-channel micro-

electrode array (Blackrock Microsystems, Salt Lake City, UT) targeting proximal arm area of

primary motor cortex. Signals were amplified, bandpass filtered (250 Hz - 8 kHz) and manually

sorted (Plexon Sort Client, box sort) with a 96-channel Plexon MAP system (Plexon, Dallas,

TX). Recorded neuronal units were either well-isolated single cells or multiple cells that could

not be well separated but as a group were tuned to intended movement direction. In each ses-

sion, we recorded 26.0 ± 3.4 (monkey A) and 39.2 ± 3.9 (monkey C) neuronal units (mean ±
one standard deviation) . Spike counts were taken in nonoverlapping 33-ms bins throughout the

behavioral task (see section 4.4.2). All animal procedures were approved by the Institutional

Animal Care and Use Committee of the University of Pittsburgh.

4.4.2 Behavioral task

Subjects modulated neural activity to drive movements of a virtual cursor in a 2D brain-machine

interface (BMI) task. The cursor (radius: 7-8 mm, monkey A; 6 mm monkey C) and targets (same

radii as cursor) were displayed to the subject on a frontoparallel stereoscopic display (Dimension

Technologies, Rochester, NY) with a refresh rate of 60 Hz. Display updates were subject to a

latency of up to 2 refresh cycles (0-33.3 ms). Target positions were chosen pseudorandomly from

a set of 16 evenly-spaced radial targets (center-to-target distance: 85 mm, monkey A; 72-73mm,

monkey C). Each trial began with the cursor at the workspace center, where the subject was

required to hold the cursor to visibly overlap a central target (center hold requirement randomly

selected for each trial: 50-350 ms, monkey A; 50-150 ms, monkey C). Following completion of

the initial hold, a peripheral target appeared, instructing the subject to initiate a cursor movement.

Target acquisition was recorded as the first timestep during which the cursor visibly overlapped

the peripheral target. Following target acquisition, the subject was required to hold the cursor

steady without losing visible overlap between the cursor and target (target hold requirement

randomly selected for each trial: 50-100 ms, monkey A; 50 ms, monkey C). A limit was placed

90



on the time between target onset and target acquisition (1.5-2 s, monkey A; 1.2-2 s, monkey

C). A trial was deemed failed and terminated if visible overlap between cursor and target was

lost before satisfying either hold requirement. If all requirements were met, a trial was deemed

successful, and the subject was provided with a water reward (120 µl, monkey A; 120-130 µl,

monkey C). Arms were restrained, and little to no hand movements were observed (although

hand positions were not recorded).

The analyzed data were subsets of data from larger experiments. The experimental details

for monkey A have been described previously (all no invisible zone conditions from Chase, et.

al. (2012) (Chase et al., 2012)). Briefly, each experiment began with roughly 40 trials that were

used to calibrate the intuitive BMI mapping (see section 4.4.4). Following calibration was a block

of 169 ± 8.1 successful trials under this intuitive BMI mapping. Next, the BMI mapping was

systematically perturbed and held constant for 365 ± 126 successful trials. Each perturbation

effectively rotated a random subset of recorded units’ decoded pushing directions (DPDs), as

in Fig. 4.12b, by a particular angle (5 experiments with 25% of units’ DPDs rotated 90◦; 20

experiments with 50% of units’ DPDs rotated 60◦; 11 experiments with 100% of units’ DPDs

rotated 30◦). In 33 of 36 experiments, perturbation trials were followed by 360 ± 237 successful

washout trials, during which the perturbation was removed, and the BMI mapping was restored

to the intuitive mapping. Unless noted otherwise, analyses of monkey A data refer to intuitive

trials. Data from the perturbation trials are shown only in Fig. 4.15, and we did not analyze data

from the washout trials. Each of the 36 experiments comprising these data took place on a unique

day.

Monkey C data were from days during which BMI cursor control alternated between the 2D

task (described above) and a 3D task (described below). All monkey C trials analyzed in this

work came from the 2D task. Each day began with roughly 40-50 trials to calibrate an intuitive

BMI mapping. Following calibration, subsequent blocks alternated between the 2D task and the

3D task, with the first of these tasks chosen randomly each day. The 3D task was similar to the

2D task, except that the cursor was allowed to move in 3D, and targets were distributed about the

surface of a workspace-centered sphere. Blocks with the 2D task consisted of 277 ± 70.4 trials,

and blocks with the 3D task consisted of 527 ± 252 trials. Each day consisted of either 3 or 4
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blocks. Monkey C experiments did not include trials under a perturbed BMI mapping. The 18

2D blocks analyzed in this work took place on 12 unique days.

4.4.3 The BMI mapping

BMI cursor position and velocity were determined from recorded spike counts according to a

BMI mapping:

pt = pt−1 + vt−1∆ (4.3)

vt = Bvut + bv (4.4)

where at timestep t, pt ∈ R
2 is the cursor position, vt ∈ R

2 is the cursor velocity, ∆ = 33 ms

is the timestep duration, ut ∈ R
q is the mean spike count vector recorded simultaneously across

q neuronal units over the past 5 timesteps (167 ms), and Bv and bv are the parameters that map

neural activity to cursor velocity. Note that the BMI mapping (Eqs. 4.3 and 4.4) can be written

equivalently in the form of Eq. 4.1:

xt = Axt−1 +But + b =




pt

vt



 =





I I ·∆
0 0









pt−1

vt−1



+





0

Bv



ut +





0

bv



 (4.5)

where the cursor state, xt, concatenates cursor position and velocity.

In some of the following analyses, we required more precise time resolution than could be

achieved by analyzing the 5-timestep smoothed velocity commands that drove the BMI cursor

(Eq. 4.4). For fine-timescale analyses, we defined single-timestep (i.e., unsmoothed) velocity

commands as:

vraw
t = Bvũt + bv (4.6)
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where ũt is the vector of recorded spike counts during the single timestep t, and Bv and bv are

the decoding parameters that were applied online, as in Eq. 4.4. Note that vt in Eq. 4.4 is the

average of single-timestep velocity commands, vraw
t−4 , ...,v

raw
t .

4.4.4 Calibration of the BMI mapping

Calibration of parameters Bv and bv of the intuitive BMI mapping was done in closed-loop and

followed the population vector algorithm (Georgopoulos et al., 1983). Details on this closed-

loop calibration have been published previously in Chase, et. al. (2012) (Chase et al., 2012).

For monkey A, an initial sequence of 8 evenly-spaced radial targets was presented to the sub-

ject while the cursor remained stationary at the workspace center. Then, an initial set of BMI

parameters was determined by regressing the average spike rates for each trial in this sequence

against the corresponding target directions. A second sequence of 8 trials followed, with cursor

movements determined by the initial parameter set, but with assistance provided by attenuating

velocities perpendicular to target directions. Following this second sequence of trials, new de-

coding parameters were determined by regressing spike rates from all previous trials against the

corresponding target directions. This process was repeated for typically 5 sequences (40 trials),

with less assistance in each subsequent sequence until no assistance was provided. The schedule

of assistance was determined on an ad-hoc basis. The intuitive BMI mapping calibrated from

these trials was then used for the subsequent block of analyzed trials (see section 4.4.2).

For monkey C, the first task of each day was randomly selected between the 2D and 3D tasks.

If the first task was 2D, calibration followed the same procedure as with monkey A. If the first

task was 3D, each calibration sequence consisted of 10 targets equidistant from the workspace

center. Eight of these targets were on the corners of a workspace-centered cube. The remaining

2 targets were nearly straight out and straight in along the z-direction, but slightly offset so that

the cursor was not visually obscured at the central start position. Because these target directions

were specified in 3D, calibration regressions resulted in parameters B3D
v ∈ R

3×q and b3D
v ∈ R

3

that could map neural activity to 3D velocity. When the task switched to 2D, the parameters Bv

and bv were set to the first two rows of B3D
v and b3D

v , respectively, corresponding to mapped

velocities in the frontoparallel plane only. These 3D calibrations typically spanned five 10-trial
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sequences (50 trials).

4.4.5 Error metrics for assessing estimates of movement intent

The primary error metric we used was the angle by which a velocity command would have missed

the target, taking into account the cursor and target radii. Because task success requires hitting

the target (i.e., cursor-target overlap), we define all commands that would result in cursor-target

overlap as having zero angular error. Mathematically, this corresponds to any velocity command

that points within ΘZ = sin−1((RC + RT )/D) degrees from the target center, where D is the

distance between target center and the position from which the velocity command originates,

and RC and RT are the cursor and target radii, respectively. A velocity command that would not

hit the target is given an error, ΘP , equal to the angle by which the cursor would have missed

the target. Equivalently, we can consider the cursor-target overlap zone defined by a target-

concentric circle with radius RT + RC , and define angular error, ΘP , to be the smallest angle

between the velocity command and the perimeter of the cursor-target overlap zone.

Consider the example in Fig. 4.19a, in which we assess the error of velocity commands (blue

and green arrows) originating from a position D = 85 mm from the target center (the distance

between workspace center and target center in a typical experiment). Here, the cursor radius,

RC , and the target radius, RT , are both 7mm (typical values from experiments). Any velocity

command that points within ΘZ = sin−1((RC + RT )/D) = 9.48o of the target center would

result in cursor-target overlap and thus would be evaluated as having zero angular error. The

green arrow points in the direction farthest from the target center such that movement of the

cursor (dashed blue circle) in this direction would result in cursor-target overlap. A velocity

command (blue arrow) pointing ΘC = 30o from the target center would miss the cursor-target

overlap zone by ΘP = ΘC −ΘZ = 20.52o.

In Fig. 4.19b, we present a similar example, but with the velocity command originating from

a position D = 60 mm from the target center. Because the cursor-target distance has decreased,

the zero error window increases to ΘZ = 13.49o. As a result, a velocity command that points

ΘC = 30o from the target center (blue arrow; same ΘC as in a), is now evaluated as having a

smaller error, ΘP = 16.51o.
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The ΘP metric was used extensively throughout this work (Fig. 4.4, Fig. 4.5, Fig. 4.6b,c,

Fig. 4.7c, Fig. 4.9, Fig. 4.11, Fig. 4.15, Fig. 4.16, Fig. 4.17, Fig. 4.18). We repeated those

analyses using ΘC as the error metric (i.e., ignoring the distance to the target, cursor radius,

and target radius) and found qualitatively similar results. In Fig. 4.4c and Fig. 4.18, velocity

commands were evaluated as originating from a range of lagged cursor positions. Since cursor

positions later in a trial tend to be closer to the target than earlier positions, velocity commands

will tend to have smaller ΘP when originating from these later cursor positions. We controlled

for this distance-to-target effect to ensure that it did not influence our results (see section 4.4.7).

4.4.6 Characterizing inherent visuomotor latencies

BMI subjects experience an inherent visual feedback delay. To assess the visuomotor latency

experienced by a subject in our BMI system, we measured the elapsed time between target on-

set and the appearance of target-related activity in the recorded neural population (Fig. 4.4a).

To determine the first timestep at which neural activity contained target information, we found

the first significant decrease in angular error relative to baseline error. For each trial, baseline

error was defined to be the average of absolute angular errors prior to target onset. Here, the

angular error at timestep t was defined to be the angle by which the cursor would have missed

the target had it continued from its current position, pt, in the direction of the single-timestep

velocity command, vraw
t , from Eq. 4.6. Single-timestep commands (vraw

t ) were analyzed here (as

opposed to smoothed cursor velocities, vt) for improved temporal resolution. Because absolute

angular errors range from 0 − 180◦, one might reasonably expect baseline error to be roughly

90◦. Baseline errors shown are less than 90◦ because angular errors were computed relative to the

cursor-target overlap zone (i.e., taking into account cursor and target radii; see Fig. 4.19). When

errors were instead computed relative to the target center, baseline errors were roughly 90◦, and

identified latencies were unaffected (data not shown). Had we introduced an arbitrary additional

delay to the display updates (Willett et al., 2013), we would expect a commensurate increase in

the identified feedback delay.
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Figure 4.19: Error metrics for assessing estimates of movement intent. (a) Example calculation

of angular error when the velocity command originates from a position with distance D = 85 mm

from the target center. RT , target radius; RC , cursor radius; ΘZ , the maximum angle by which

a velocity command can point away from the target center and still incur zero angular error (if

the cursor continued at that angle, it would still hit the target due to the cursor and target radii);

ΘP , angular error of the velocity command, calculated by determining the angle by which that

command would miss the perimeter of the cursor-target overlap zone; ΘC , angle between the

velocity command and the target center. (b) Angular error of the same velocity command as

in a, but with the velocity command originating from D = 60 mm from the target center. The

difference between the error angles, ΘP , in a and b, reflects the task goals, because a wider range

of velocity commands would result in task success in b compared to a, and thus the same velocity

command is more task-appropriate in b than in a.
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4.4.7 Assessing feedback delay compensation

Because of the visual feedback delay (Fig. 4.4a), at timestep t the subject cannot yet directly

access the timestep t cursor position. To determine whether subjects compensated for the visual

feedback delay, we asked whether neural activity recorded at timestep t was more appropriate for

the timestep t cursor position or for a previous cursor position. Across a range of lags, d = [−100

ms, ..., 300 ms], we computed the angular errors of single-timestep velocity commands, vraw
t (as

in Eq. 4.6), as if they had originated at lagged positions pt−d (Fig. 4.4b).

Here, angular errors were defined to be the angle by which the cursor would have missed

the target had it originated at position pt−d and continued in the direction of the single-timestep

velocity command vraw
t , taking into account the radii of the cursor and the target (i.e., ΘP in

Fig. 4.19). This error metric was chosen because it reflects the task goal, that to succeed in a

trial, the subject had to to acquire visible overlap between the cursor and the target (Fig. 4.19).

By taking into account cursor and target radii, this error metric is influenced by cursor-to-

target distance. Specifically, velocity commands originating from positions close to the target

will have smaller errors under this definition than the same velocity commands originating far

from the target (Fig. 4.19). Without accounting for this distance-to-target bias, absolute angular

errors might appear smaller for lags that are less positive because these lagged cursor positions

will tend to be closer to the targets than cursor positions with more positive lags (e.g., pt−d

tends to be closer to the target when d = 0 ms than when d = 300 ms). To ensure that this

distance-to-target bias did not influence our conclusions about feedback delay compensation,

errors were computed for the same exact subset of cursor positions across lags. This selection

process preserves cursor-to-target distances across lags and thus ensures that the same exact error

bias is applied at each lag. To this end, we included in this analysis only cursor positions for

which all required lags of neural activity were recorded within the corresponding trial. Further,

we only considered cursor positions that were presented at least 100 ms following target onset to

ensure that recorded neural activity could plausibly reflect target position given a feedback delay

of 100 ms. To determine the error value for a particular lag along the curves in Fig. 4.4c, we first

averaged all absolute angular errors for that lag within each trial, and then averaged across trials.

A preliminary version of this analysis using different experiments has appeared in conference
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form (Golub et al., 2012).

4.4.8 Framework for internal model estimation (IME)

The IME framework is a statistical tool we developed to extract from neural population activity i)

a subject’s internal model of the BMI mapping, and ii) the subject’s timestep-by-timestep internal

predictions about the cursor state. The central concept underlying the IME framework is that at

each timestep, the subject internally predicts the current cursor position using outdated visual

feedback and a recollection of previously-issued neural commands (representative of efference

copy or corollary discharge (Crapse and Sommer, 2008)), and issues the next neural command

with the intention of driving the cursor straight toward the target from the up-to-date prediction

of the current cursor position (Fig. 4.6b).

Formally, the IME framework is a probabilistic model defined by Eqs. 4.7–4.12. The sub-

ject’s internal model, as introduced in Fig. 4.6a, is is represented as follows:

for k = {t− τ + 1, ..., t} :

p̃t
k = p̃t

k−1 + ṽt
k−1∆ (4.7)

ṽt
k = Ãvṽ

t
k−1 + B̃vũk + b̃v +wt

k (4.8)

where p̃t
k ∈ R

2 and ṽt
k ∈ R

2 are the subject’s internal predictions of the timestep k cursor posi-

tion and velocity when the subject is sitting at timestep t, ∆ is the timestep of the BMI system

(33 ms), ũk ∈ R
q is a vector of the spike counts recorded simultaneously across the q neuronal

units at timestep k, Ãv ∈ R
2×2, B̃v ∈ R

2×q, and b̃v ∈ R
2 are parameters capturing the subject’s

internal model, and wt
k ∈ R

2 is a Gaussian random variable (with isotropic noise variance, w)

representing internal predictions not captured by the internal model. More specifically, Ã repre-

sents the subject’s internal conception of the physical properties of the cursor, and B̃ represents

the subject’s internal conception of how neural activity drives movement of the cursor. Note that
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the subject’s internal model in Eqs. 4.7 and 4.8 can be written in the form of Eq. 4.2:

x̃t
k = Ãx̃t

k−1 + B̃ũk + b̃+ noise =




p̃t
k

ṽt
k



 =





I I ·∆
0 Ãv









p̃t
k−1

ṽt
k−1



+





0

B̃v



 ũk +





0

b̃v



+





0

wt
k



 (4.9)

where the subject’s internal state prediction, x̃k
t , includes the internal prediction of cursor posi-

tion, p̃t
k, and velocity, ṽt

k. For simplicity in Eq. 4.2, we omitted the noise term, the superscript

notation, and the distinction between spike count vectors recorded at a single timestep, ũt, and

average spike count vectors across 5 timesteps, ut (more details on smoothing are given below).

Visual feedback grounds the subject’s internal predictions with reality. At timestep t, the sub-

ject’s internal prediction of the cursor position and velocity at the feedback delay (τ , as discussed

in section 4.2.1) match the most recently available cursor position and velocity from visual feed-

back:

p̃t
t−τ = pt−τ (4.10)

ṽt
t−τ = vt−τ (4.11)

The internal model in Eqs. 4.7 and 4.8 is then applied recursively (i.e., across k ∈ {t − τ +

1, ..., t}) to arrive at up-to-date predictions, p̃t
t and ṽt

t, about the current cursor state. The re-

sulting set of internal predictions corresponds to the whiskers shown in Fig. 4.6, Fig. 4.7, and

Fig. 4.8.

Finally, we incorporate the notion of straight-to-target aiming intention with:

Gt = p̃t
t + αtṽ

t
t + rt (4.12)

where Gt ∈ R
2 is the target position, αt ∈ R

+ is a non-negative distance scale parameter, and

rt ∈ R
2 is a Gaussian random variable (with isotropic noise variance, r) representing internal
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velocity predictions that do not point straight to the target. Since the target was held constant

within each BMI trial, Gt took on the same value for all timesteps corresponding to a particular

trial. Intuitively, Eq. 4.12 says that when the subject internally believed the cursor to be at posi-

tion p̃t
t, the intended velocity command, ṽt

t, ought to point in the direction of the target, Gt. The

distance scale parameters, αt, are included to allow the data to determine the velocity magnitude

(i.e., to avoid making a-priori assumptions about the subject’s intended velocity magnitude). Ad-

ditionally, the linear form of Eq. 4.12 was chosen so all latent variables, {p̃, ṽ}, and observed

variables, {G, ũ}, are jointly Gaussian.

Throughout control, new visual feedback continues to arrive, and new neural commands

are issued at each timestep. IME captures this progression by including a new set of internal

predictions (i.e., a new whisker) at each timestep. For example, at timestep t + 1, the subject

receives new feedback about the cursor state, pt−τ+1 and vt−τ+1, and accordingly forms a new

set of internal predictions {p̃t+1
k , ṽt+1

k } for k ∈ {t− τ + 2, ..., t+ 1}. The full IME probabilistic

graphical model is drawn in Fig. 4.20 to visually depict this instantiation of Eqs. 4.7–4.12 at each

timestep during control.

Through Eq. 4.12 we assume that the subject attempts to move the cursor straight to the

target from an internal estimate of the current position. We believe that straight-to-target aiming

is a reasonable first-order assumption because the BMI cursor, on average, moves straight to the

target during proficient control (see Fig. 4.2). It may be possible to incorporate other movement

objectives, such as minimizing endpoint error (Harris and Wolpert, 1998) or movement jerk

(Flash and Hogan, 1985), in the IME framework, which may yield even greater explanatory

power. However, at present, there is not clear evidence that these other movement objectives

underlie BMI cursor control, so we apply only the basic straight-to-target movement objective in

this work.

Both the BMI mapping (Eqs. 4.3–4.5) and the internal model representation (Eqs. 4.7–4.9)

implement smoothness across BMI cursor velocities and internal velocity predictions, respec-

tively. The details of this smoothing are subtly different between the BMI and the IME frame-

work. To mitigate the effects of neural spiking noise, the BMI mapping smooths cursor velocities

by incorporating neural activity at each timestep through the 5-timestep boxcar filter, as described
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Figure 4.20: Full probabilistic graphical model for the internal model estimation (IME) frame-

work. At timestep t, the subject generates a set of internal state predictions (row of x̃t variables

in the solid box) based on the most recently available visual feedback (xt−3) and recently issued

neural commands (ũt−2, ..., ũt). Because the subject aims straight to the target from the subject’s

up-to-date prediction of cursor position, the target position (Gt) should lie along the line defined

by subject’s up-to-date position and velocity predictions (p̃t
t and ṽt

t, included in x̃t
t). At the next

timestep (t + 1), the subject generates a revised set of internal predictions (row of x̃t+1 vari-

ables) based on newly received visual feedback (xt−2), the most recently issued neural command

(ũt+1), and previously issued neural commands (ũt−1 and ũt).

A column of internal state predictions represents the subject’s internal predictions of the cursor

position given more and more recent visual feedback (e.g., the x̃k
t variables in the dashed box

represent the subject’s internal predictions of the timestep t cursor state xt given visual feedback

available through timestep k). Once a neural command is issued, it cannot be revised, and as

such, the same neural command continues to influence internal predictions until visual feedback

becomes available from the corresponding timestep (ũt affects the x̃t, x̃t+1 and x̃t+2 variables,

but not the x̃t+3 variables as xt has become available, rendering ũt irrelevant). The target po-

sition Gt took on the same value for all timesteps within the same trial. Shaded nodes indicate

observed data, and unshaded nodes represent latent variables. Red nodes represent the subject’s

internal state predictions.

following Eq. 4.4. Temporal smoothing in internal velocity predictions is achieved through the

subject’s internal prior belief about how the internal velocity prediction at one timestep influences

the prediction at the next timestep, as encoded by Ãv.
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4.4.9 Variants on the IME framework

Position-only IME (pIME)

In a preliminary IME formulation, we modeled the subject’s internal state prediction using posi-

tion only, rather than using both position and velocity. We refer to this this preliminary frame-

work as pIME. The pIME probabilistic model is fully specified as follows:

p̃t
t−τ = pt−τ (4.13)

p̃t
k = Ãp̃t

k−1 + (B̃ũk−1 + b̃)∆ +wt
k, for k = {t− τ + 1, ..., t+ 1} (4.14)

Gt = p̃t
t+1 + αt(p̃

t
t+1 − p̃t

t) + rt (4.15)

where p̃t
k ∈ R

2 is the subject’s internal predictions of the timestep k cursor position when the

subject is sitting at timestep t, ∆ is the timestep of the BMI system (33 ms), ũk ∈ R
q is a

vector of the spike counts recorded simultaneously across the q neuronal units at timestep k,

Ã ∈ R
2×2, B̃ ∈ R

2×q, and b̃ ∈ R
2 are parameters capturing the subject’s internal model,

wt
k ∈ R

2 is a Gaussian random variable (with isotropic noise variance, w) representing internal

predictions not captured by the internal model, Gt ∈ R
2 is the target position, αt ∈ R

+ is a non-

negative distance scale parameter, and rt ∈ R
2 is a Gaussian random variable (with isotropic

noise variance, r) representing internal position predictions that do not align with the straight-to-

target direction.

Figure 4.21 shows two example cursor trajectories with pIME whiskers overlaid. The inclu-

sion of velocity in the IME framework has several important advantages over the preliminary

pIME framework. First, it allows the model to capture the subject using feedback about cursor

velocity to internally predict cursor position and velocities. Second, including velocity in the

state enables IME to automatically determine the degree of temporal smoothness in internal ve-

locity predictions, based on the data, by fitting an appropriate Ãv. To produce temporally smooth

internal velocity predictions with pIME, the experimenter must pre-smooth the neural activity be-

fore using pIME for model fitting and evaluation. If neural activity is not pre-smoothed, pIME

whiskers appear jagged (Fig. 4.21). This lack of smoothness in pIME whiskers results because
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pIME has no explicit representation of internal velocity predictions. Rather, internal velocity

predictions are implicitly represented in the first-order differences between internal position pre-

dictions.

Figure 4.21: Example trials overlaid with

pIME whiskers. (a) Typical trial in which

the cursor followed a direct path (black)

to the target. (b) Trial with a circuitous

cursor trajectory. In both a and b, pIME

whiskers (red) point straight toward the

a b

target, even when the cursor trajectory does not. Temporal smoothing was not applied to the

neural activity before generating these whiskers, and thus they appear jagged relative to the

cursor trajectories (which are smoothed by the BMI mapping) and relative to the IME whiskers

in Fig. 4.7a,b and Fig. 4.8.

“Neural-only” IME

To determine the relative explanatory power of (i) temporal structure in the low-dimensional

kinematics and (ii) hidden structure in the high-dimensional neural activity, we devised “neural-

only IME.” In the internal model of Eq. 4.8, Ãv summarizes temporal dynamics in the low-

dimensional velocity predictions, Intended velocity tends to be similar from one timestep to the

next, and whiskers with the appropriate temporal structure (as determined by fitting Ãv to the

data) can explain a portion of cursor movement errors. The internal model parameters B̃v and b̃v

reveal features in the high-dimensional neural activity that are consistent with straight-to-target

movement intent and that are often not reflected in the BMI cursor movements.

In “neural-only” IME, we constrained Ãv = 0 in Eq. 4.4, removing IME’s ability to lever-

age velocity dynamics within its whiskers while preserving its ability to identify structure in

the high-dimensional neural activity (since no constraints are placed on B̃v). Equivalently, this

neural-only IME variant can also be described as a constrained pIME model with Ã = I (see

Eqs. 4.13–4.15 in Section 4.4.8). In this constrained neural-only IME variant, the subject’s in-

ternal prediction of the velocity resulting from neural command ũt is simply ṽt
t = B̃vũt + b̃v .

Results from “neural-only” internal models are presented in Fig. 4.16. The fair comparison

is between the angular errors of the ṽt
t (“neural only”) and the vraw

t (“unsmoothed cursor”). For

103



reference, Fig. 4.16 also shows the error from unconstrained IME (i“neural + dynamics”), in

which Ãv was fit to the data.

4.4.10 Parameter fitting for the IME framework

We fit IME models using expectation maximization (EM) (Dempster et al., 1977), a maximum

likelihood estimation technique for latent variable models. Training data for each trial con-

sisted of recorded spike counts and actual cursor positions for timesteps beginning at movement

onset and ending at target acquisition, as well as the target position for that trial. Movement

onset for a given trial was defined as the first timestep at which the cursor speed, projected

in the center-to-target direction, exceeded 15% of its maximum from that trial. During the E-

step, posterior distributions, P({x̃} | {x,u,G}), are computed over the internal states given a

set of model parameters. Intuitively, these posteriors are distributions over whiskers that com-

promise between satisfying the internal model (Eqs. 4.7 and 4.8) and straight-to-target aiming

(Eq. 4.12). During the M-step, these posterior distributions are used to update the model pa-

rameters, Ã, B̃, b̃, w, {αt}, and r. We typically ran EM for 5,000 iterations, but allowed fewer

iterations if model parameters converged sooner.

To determine the feedback delay, τ , we fit pIME models for τ ∈ {0, ..., 9} and assessed

model fit by examining the data likelihood, P({Gt}|{xt}, {ut}). As τ increases, the number

of parameters remains fixed, and thus increasing τ does not lead to overfitting. Figure 4.22a

shows the training data log-likelihood for a single BMI session across all evaluated choices of

τ , and Fig. 4.22b gives the values of τ that maximized each training fold’s data log-likelihood.

A feedback delay of 3 timesteps (100 ms) most often gave the best model fit. This result agrees

with reaction times we measured from BMI cursor trajectories (Fig. 4.4a) and previously reported

motor-cortical latencies to visual stimuli (Schwartz et al., 1988). For simplicity and to remain

consistent with our experimental characterization of the visuomotor latency from Fig. 4.4a, we

fixed this parameter (τ = 3 ≈ 100 ms, monkey A; τ = 4 ≈ 133 ms, monkey C) in all analyses

within this chapter.

Throughout our results, if a whisker points toward the target, it is not trivially due to our

inclusion of straight-to-target aiming into IME (Eq. 4.12). Rather, whiskers that point toward
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targets are evidence of real structure in the data. We ensure that whiskers do not trivially point

toward targets by using cross-validation techniques whenever evaluating or visualizing extracted

internal models and their corresponding internal state predictions (whiskers). For a given exper-

imental session, trials were randomly assigned to folds such that each fold consisted of one trial

to each unique target. We employed K-fold cross-validation, where K was the number of folds

in a given experimental session. Internal models were fit to the data in K − 1 folds (training

data), and the data from the held-out fold (test data) were used when evaluating the extracted

internal model.

Although target positions were used to incorporate the notion of straight-to-target aiming

during model fitting (through Eq. 4.12), neither targets nor Eq. 4.12 were used when evaluat-

ing extracted internal models on held-out data. Rather, whiskers were defined as the expected

value of the internal state predictions given only available visual feedback and previously issued

neural activity (i.e., E({x̃t
t−τ , ..., x̃

t
t} | xt−τ , ũt−τ+1, ..., ũt) according to the probabilistic model,

using only Eqs. 4.7–4.11 and not Eq. 4.12). We found that cross-validated whiskers consistently

pointed straight to targets. This result did not trivially need to be the case, as those targets were

not used to construct the whiskers. Rather, given internal models extracted from the training data,

the statistical structure underlying the recorded neural activity in the test data was consistent with

aiming straight to targets from internal predictions of cursor position.

Figure 4.22: Model selection in pIME for de-

termining the feedback delay, τ . (a) Log-

likelihood as a function of τ over training data

from a single BMI experiment. For this repre-

sentative experiment, the feedback delay that

maximized the data likelihood was τML = 3
timesteps (100 ms). (b) Histogram of τML val-

ues across 36 monkey A experiments (10 folds

each).
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4.4.11 Internal model estimation as an inverse optimal control problem

In this section, we frame internal model estimation as a novel computational problem at the

interface between machine learning and control theory: learning an internal dynamics model

from control demonstration. Much work in optimal control and inverse control has assumed that

the controller has perfect knowledge of plant dynamics. However, if the controller is a human or

animal subject, the subject’s internal dynamics model may differ from the true plant dynamics.

Here, we consider the problem of learning the subject’s internal model from demonstrations of

control and knowledge of task goals. Due to sensory feedback delay, the subject uses an internal

model to generate an internal prediction of the current plant state, which may differ from the

actual plant state. We develop a general probabilistic framework and exact EM algorithm to

jointly estimate the internal dynamics model, internal state trajectories, and feedback delay.

Inverse optimal control (IOC) and inverse reinforcement learning (IRL) aim to identify a

cost function from demonstrations of successful control (Boyd et al., 1994; Schaal, 1999; Ng

and Russell, 2000; Abbeel and Ng, 2004; Ratliff et al., 2006; Coates et al., 2008; Ziebart et al.,

2008). These approaches typically require a model of the plant dynamics, which enables pre-

diction of future states given the current state and control input. In previous work, it has been

assumed that the controller’s internal belief about the plant dynamics matches the actual plant

dynamics. However, when the controller is a human or animal subject, this internal belief may

differ from the actual plant dynamics (Crapse and Sommer, 2008), especially if the subject has

limited experience driving the plant. This mismatch can exist even when demonstrated control

is proficient (e.g., the implemented control strategy may be only locally optimal). Because the

plant dynamics and cost function jointly determine the optimal control policy, an incorrect as-

sumption about the dynamics model can lead to misestimation of the cost function via IOC or

IRL.

Ideally, we would like to use demonstrated control to learn both the subject’s internal model

of the plant dynamics and the cost function together. This joint estimation is difficult, so previous

work has focused on learning the cost function while assuming known plant dynamics. Here, we

present and solve the complementary problem of learning the subject’s internal model of the plant

dynamics while assuming knowledge of the task goals. This problem is challenging because at
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each control decision, the subject must generate an internal estimate of the current plant state

based on delayed sensory feedback (Miall and Wolpert, 1996), and we cannot directly observe

these internal state estimates.

We introduce a generalized version of the IME framework, termed gIME, through which

inference and learning provide a solution to the current problem in the setting of linear-Gaussian

internal model dynamics and quadratic cost functions. In gIME, the subject’s internal model of

the plant dynamics defines trajectories of latent variables representing the subject’s moment-by-

moment internal estimates of the plant state. We assume knowledge of the control signals sent

by the subject, the plant state feedback available to the subject, and target states to which the

subject intends to drive the plant during control. Importantly, we make no assumption that the

subject’s internal dynamics model should match the true plant dynamics.

Beyond the algorithmic advance, the ability to extract a subject’s internal model has many

potential applications in neuroscience and human-in-the-loop control. Access to a subject’s in-

ternal model could provide a means for tracking and encouraging skill acquisition in complex

tasks, including brain-machine interface (BMI) control, telerobotic surgery or remote control of

unmanned-aerial vehicles. In this work we apply the developed methods toward demonstrations

of BMI cursor control. BMIs have been developed to assist disabled patients by translating neural

activity into control signals for a prosthetic limb or computer cursor (Green and Kalaska, 2011).

BMI control is an acquired skill, akin to driving a car or helicopter. Previous studies have shown

that subjects improve BMI control performance over time (Taylor et al., 2002; Ganguly et al.,

2011). This improvement is likely a result of the subject refining an internal model of the BMI

plant dynamics through experience. Access to the subject’s internal model of the BMI, through

the methods we develop here, may inform the design of future BMI systems and may provide

neuroscientists with novel tools for investigating the neural basis of feedback motor control and

motor learning.
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Problem Formulation

A standard control model takes the following form:

Dynamics: x̃t+1 = f̃(x̃t,ut) (4.16)

Cost: J({x̃t}, {ut}) (4.17)

where f̃ represents the subject’s belief about the plant dynamics, x̃t ∈ R
n is the subject’s belief

of the plant state at timestep t, ut ∈ R
m is the control input issued at timestep t, and J is the cost

function that encodes task goals and control effort. We distinguish the subject’s internal model

of the plant dynamics, f̃ , from the actual plant dynamics, f :

xt+1 = f(xt,ut) (4.18)

where xt ∈ R
p is the actual plant state at timestep t.

Due to sensory feedback delay, the feedback available at timestep t represents the plant state

at timestep t−τ , where τ is the feedback delay. To predict the current plant state, the subject can

use f̃ as a forward model, propagating xt−τ (or a noise-corrupted function of it) forward in time

using knowledge of the plant dynamics and previously issued controls ut−τ , ...,ut−1. In general,

the subject’s internal beliefs {x̃t} may be inconsistent with the actual plant states {xt} due to

differences between f̃ and f and due to sensory noise.

The problem we seek to solve is:

Given: {xt}, {ut}, J

Estimate: f̃ , {x̃t}, τ

That is, given trajectories of actual plant state and control input, and assuming a cost function,

we seek to estimate the subject’s internal model of the plant dynamics, the subject’s internal

estimates of plant state, and the sensory feedback delay.

In the remainder of this section, we focus on the case where f̃ is linear-Gaussian and J

is quadratic over the internal states, in analogy to the well-studied linear-quadratic regulator
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(Anderson and Moore, 1990). These choices allow us to derive an approximation-free algorithm

to solve the internal model estimation problem.

Generalized probabilistic framework for internal model estimation

The gIME probabilistic model is as follows:

x̃t
t−τ | xt−τ ∼ N (Hxt−τ ,W0) (4.19)

x̃t
k+1 | x̃t

k,uk ∼ N
(

Ãx̃t
k + B̃uk + b̃,W

)

(4.20)

Gt | x̃t
t+1 ∼ N

(

Ctx̃
t
t+1,V

)

(4.21)

At timestep t ∈ {1, ..., T}, xt ∈ R
p is the actual plant state, x̃t

k ∈ R
n is the subject’s internal

estimate of the timestep k ∈ {t − τ, ..., t + 1} plant state (see below for detailed explanation),

ut ∈ R
m is the subject’s control input, and Gt ∈ R

q represents control goals. The parameters

are the feedback matrix H ∈ R
n×p, the subject’s internal model parameters {Ã ∈ R

n×n, B̃ ∈
R

n×m, b̃ ∈ R
n}, the cost matrices Ct ∈ R

q×n, noise covariance matrices {W0 ∈ R
n×n,W ∈

R
n×n,V ∈ R

q×q}, and the sensory feedback delay τ ∈ Z
+. The gIME graphical model for a

single timestep feedback delay (τ = 1) is shown in Fig. 4.23.

Due to sensory delays, the plant state feedback available at timestep t is outdated by τ

timesteps. Accordingly, Eq. 4.19 defines the subject’s noisy, partial observation of delayed plant

state feedback. Sitting at timestep t, the subject uses this feedback, xt−τ , to form an internal

estimate, x̃t
t−τ , of the timestep t − τ plant state. The noise covariance W0 accounts for sensory

noise.

We define the subject’s internal dynamics model in Eq. 4.20 to be a Gaussian linear-dynamical

system that propagates the subject’s internal estimates of plant state given control input. At

timestep t, the subject makes internal estimates, x̃t
k, of the past (k = t − τ, . . . , t − 1), current

(k = t), and future (k = t + 1) plant states. This timestep t internal state chain (Fig. 4.23a) cor-

responds to a row of latent states in the gIME graphical model (Fig. 4.23b). The state chain

begins with x̃t
t−τ , the subject’s internal belief about the plant state feedback, xt−τ . Subse-

quent internal state estimates, {x̃t
t−τ+1, . . . , x̃

t
t+1}, may be inconsistent with the true plant states,
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{xt−τ+1, . . . ,xt+1}, because i) sensory feedback is not yet available for these timesteps, and ii)

there may be mismatch between the subject’s internal model (Eq. 4.20) and the true plant dynam-

ics (Eq. 4.18). Internal state transitions not explained by the internal model are accounted for by

the noise covariance, W. At timestep t+1, the subject receives new plant feedback, xt−τ+1, and

generates revised internal estimates, {x̃t+1
t−τ+1, . . . , x̃

t+1
t+2}, corresponding to a new row of latent

states in the graphical model. The variables, x̃t
k, where we fix k and vary t ∈ {k− 1, . . . , k+ τ},

correspond to a column of latent states in the graphical model and represent successive revisions

of the subject’s beliefs about the timestep k plant state, given the sensory feedback available at

timestep t. Note that Eq. 4.20 is the gIME instantiation of Eq. 4.16.

In Eq. 4.21, we encode the subject’s cost function. At timestep t, the subject determines the

next control signal to send, ut, which the subject’s internal model predicts will drive the plant to

state x̃t
t+1. The cost matrix, Ct, relates this internal state estimate to the given control goals, Gt.

Depending on the application, Ct may be fully specified in advance, or may contain parameters

to be learned. For example, in a trajectory tracking task, the Gt might encode the (known)

desired trajectory, and Ct might simply extract appropriate components of the subject’s internal

estimate of the upcoming plant state, x̃t
t+1. Alternatively, Ct might compute linear functions of

Figure 4.23: gIME graphical model with

a single timestep feedback delay (τ = 1).

Observed variables are indicated as shaded

nodes, and unshaded nodes are latent vari-

ables. (a) Timestep t slice of gIME.

Delayed sensory feedback of plant state,

xt−1, and previously issued control input,

ut−1, propagate through the subject’s in-

ternal dynamics model to generate inter-

nal estimates of plant state, x̃t
t−1 and x̃t

t.

With belief x̃t
t of the current plant state,

the subject generates a new control signal,

ut. The internal model predicts the result-

ing future state, x̃t
t+1, which should agree

with the current task goal, Gt. (b) The

full gIME graphical model. The timestep t
slice from a is embedded in the upper left

corner.

u
t-1

u
t

x
t

x
t

x
t

x
t

x
t
G

t

xt
t

xt
t-1

xt
t+1

x
t-1

u
t-1

u
t

u
t+1

u
t+2

xt+2
t+2

xt+2
t+1

xt+2
t+3

x
t

x
t

x
t

x
t

x
t
G

t

xt
t

xt
t-1

xt
t+1

xt+1
t+1

xt+1
t

xt+1
t+2

. . .

. . .

x
t-1

x
t-1

x
t

G
t+1

G
t+2

a

b

~ ~ ~

~ ~ ~

~ ~ ~

~ ~ ~

110



feature counts (Ng and Russell, 2000; Abbeel and Ng, 2004) from the subject’s internal state

estimates. In the earlier sections of this chapter, we describe and apply specialized variants of

gIME in which the Gt are constant across timesteps and represent a control goal to be attained by

some arbitrary time in the future. In this application, we use Ct to extract the extent to which the

subject is on track to achieve the goal state. Note that Eq. 4.21 relates to Eq. 4.17, but does not

incorporate control effort. As a result, we focus the application of this framework to problems

where either i) the cost function is dominated by the state cost, or ii) we can structure the Ct in

Eq. 4.21 to account for an unknown control cost.

Model Fitting

In model fitting, we treat actual plant states, {xt}, control inputs, {ut}, and task goals, {Gt},

as observed variables. We treat the internal state estimates, {x̃t
t−τ , ..., x̃

t
t+1}, as unobserved la-

tent variables. We seek the model parameters, H,W0, Ã, B̃, b̃,W, {Ct},V, and τ , that maxi-

mize P({Gt}|{xt}, {ut}), the likelihood of the control goals under the distribution induced by

Eqs. 4.19–4.21. In some applications Ct may be known a priori rather than learned.

We derived an exact expectation-maximization (EM) algorithm (Dempster et al., 1977) for a

specified feedback delay, τ (see below). In the E-step, we infer posterior distributions over the la-

tent variables, P({x̃t
t−τ , ..., x̃

t
t+1} | {xt}, {ut}, {Gt}), using the current parameter estimates. In

the M-step, we update model parameters given the posterior latent variable distributions. Since

the relationships in Eqs. 4.19–4.21 are linear-Gaussian, all latent and observed variables are

jointly Gaussian. Additionally, given all control inputs, an internal state chain for one timestep

is conditionally independent of the internal state chains for all other timesteps

x̃t1
t1−τ , ..., x̃

t1
t1+1 ⊥ x̃t2

t2−τ , ..., x̃
t2
t2+1 | {ut} (4.22)

where t1 6= t2. These properties of gIME enable an exact and efficient E-step update to the

posterior latent variable distributions, and closed-form M-step parameter updates.

To identify the feedback delay, τ , we fit gIME across a sequence of τ values. As τ increases,

the number of parameters remains fixed, and thus increasing τ does not lead to overfitting. For
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this reason we can simply choose τML to be the τ whose corresponding gIME fit gives the highest

training data likelihood, P({Gt}|{xt}, {ut}).

EM algorithm for the gIME probabilistic framework:

Expectation Step

µ
t
t−τ = Hxt−τ

µ
t
k+1 = Ãµ

t
k + B̃uk + b̃

Σx̃t
t−τ ,x̃

t
t−τ

= W0

Σx̃t
k+1

,x̃t
k+1

= ÃΣx̃t
k
,x̃t

k
Ã′ +W

Σx̃t
k
,x̃t

k+d+1
= Σx̃t

k
,x̃t

k+d
Ã′
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t
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t+1
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t+1
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t
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µ
t
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Γt = Ctµ
t
t+1

ΣGt
= CtΣx̃t

t+1
,x̃t

t+1
Ct

′ +V
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µ̃t = µt +Σx̃,Gt
Σ−1

Gt
(Gt − Γt)

Σ̃x = Σx̃ −Σx̃,Gt
Σ−1

Gt
Σ′

x̃,Gt

Maximization Step

H =

(

T
∑

t=1

µ̃
t
t−τ (xt−τ )

′

)(

T
∑

t=1

xt−τ (xt−τ )
′

)−1

W0 =
1

T

T
∑

t=1

(

Σ̃x̃t
t−τ ,x̃

t
t−τ

+ µ̃
t
t−τ (µ̃

t
t−τ )

′ −Hxt−τ (µ̃
t
t−τ )

′
)
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[

Ã B̃ b̃
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T
∑
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Pt
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T
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T
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Qt
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τ × T
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C =

(

T
∑

t=1

Gt(µ̃
t
t+1)

′

)(

T
∑

t=1

(

Σ̃x̃t
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+ µ̃
t
t+1(µ̃

t
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)
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1

T

T
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′ −Ctµ̃

t
t+1Gt

′
)

Minor algorithmic changes are required to fit the specific IME and pIME models, which were

used to generate the results throughout this chapter.
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4.4.12 Comparison of motor commands predicted by the internal model to

those produced by the BMI mapping

Comparisons of the appropriateness of the recorded neural activity through the BMI mapping

versus through extracted internal models are shown as angular errors in Fig. 4.6b,c, Fig. 4.7c,

Fig. 4.9, Fig. 4.15, Fig. 4.16, and Fig. 4.17. For a particular timestep, t, we computed the angular

error of the neural activity through the BMI mapping as the angle by which the cursor would have

missed the target had it continued from cursor position pt in the direction of the cursor velocity,

vt (i.e., ΘP in Fig. 4.19). Similarly, we computed the angular error of the neural activity through

the subject’s internal model as the angle by which the cursor would have missed the target had

it continued from the subject’s internal position prediction, p̃t
t, in the direction of the subject’s

internal velocity prediction, ṽt
t. Internal model errors were computed from whiskers that could

be constructed given cursor feedback and recorded spike counts beginning at movement onset

and through target acquisition. Whiskers were extracted using the cross-validation techniques

described in Section 4.4.10. In Fig. 4.6c, Fig. 4.15, Fig. 4.16, and Fig. 4.17, absolute angular

errors were first averaged within each trial, then averaged across all trials.

4.4.13 Visualizing an extracted internal model

In Fig. 4.12 we visualize the parameters of an extracted internal model as “pushing vectors”,

and interpret them relative to the corresponding parameters of the BMI mapping. Because of

differences in how temporal smoothing is implemented through the BMI mapping and the inter-

nal model, magnitudes of pushing vectors are not directly comparable between the BMI mapping

and the internal model. In the BMI mapping, temporal smoothing comes from averaging the neu-

ral activity across 5 timesteps, as in Eq. 4.4. In the internal model, temporal smoothing comes

from the specification that each velocity prediction includes a contribution from the previous

velocity prediction through Ãv, as in Eq. 4.8. To provide visually comparable pushing vectors,

we factored out the influence of temporal smoothing by visualizing the pushing vectors from

Bv and B̃v as follows. Pushing vectors in Fig. 4.12a show how the cursor would have moved

given a single smoothed spike count from each unit. Analogously in Fig. 4.12b, we rescaled the
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pushing vectors in B̃v by 1/(1− 1

2
trace(Ãv)), approximately normalizing by the fraction of the

internal velocity prediction that comes from the previous velocity prediction rather than from the

current neural activity. The 1
2
trace(Ãv) in the scaling factor gives the average value along the

diagonal of the 2× 2 matrix, Ãv. This normalization was only required because of the particular

manner by which cursor velocities were smoothed during BMI experiments. If we had instead

used a Kalman filter as the BMI mapping during experiments, pushing vectors would be directly

comparable without normalization.

In Fig. 4.14, we visually interpret an example spike count vector through the internal model

shown in Fig. 4.12. This example spike count vector contributed to the monkey A “movement”

bar in Fig. 4.13b, as it was the timestep at which cursor-to-target distance first decreased below

50% of the center-to-target distance. The example spike count vector is from the same session as

the BMI mapping and internal model parameters shown in Fig. 4.12, and the spike count vector

is from a held-out trial not used to fit that internal model. Fig. 4.14b,c reflect rescaled B̃v and

b̃v, as described above.

4.4.14 Evaluating the speed bias resulting from internal model mismatch

In Fig. 4.13 we compared the timestep-by-timestep speeds of the actual cursor to the subject’s

intended cursor speed, as determined by extracted internal models. At timestep t, actual cursor

speed was taken to be the magnitude of cursor velocity vt from Eq. 4.4, and intended cursor

speed was taken to be the magnitude of the subject’s velocity belief, ṽt
t. To form the curves

in Fig. 4.13a, we selected all timesteps when intended cursor speed was s and computed the

distribution of actual cursor speeds at those same timesteps. Curves show the mean actual cursor

speed (and S.E.M.) as a function of intended cursor speed, s. In Fig. 4.13b, we included all

timesteps preceding target onset to form the speed difference bars labeled “center hold” . To

form the “movement” bars, we included for each trial the single timestep at which cursor-to-

target distance first decreased below 50% of the center-to-target distance.
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Chapter 5

Summary and future directions

List of contributions

In this dissertation, we leveraged a closed-loop BMI paradigm toward investigating the neural

basis of feedback motor control. The specific contributions of this dissertation are as follows:

1. Explanation of deficient control of BMI speed from the perspective of neural coding during

arm reaching (Chapter 3)

2. Design and experimental validation of the SDKF decoding algorithm as an engineering

solution to the BMI speed problem (Chapter 3)

3. Introduction of the BMI paradigm as a testbed for studying internal models (Chapter 4)

4. Identification of evidence that internal models underly BMI control (Chapter 4)

5. Development of IME as a novel statistical framework for extracting a subject’s internal

model from neural population activity (Chapter 4)

6. Explanation of movement errors due to internal model mismatch (Chapter 4)

Summary

In Chapter 3, we provided evidence from rhesus monkeys that the motor cortical coding of move-

ment speed may be substantially weaker than that of movement direction and may contribute to

the observed difficulties in BMI speed control. These findings inspired our design of a novel

117



BMI decoding algorithm, the speed-dampening Kalman filter (SDKF) that automatically slows

the cursor upon detecting changes in decoded movement direction. Effectively, SDKF enhances

speed control using prevalent directional signals, rather than requiring speed to be directly de-

coded from neural activity. SDKF improved success rates by a factor of 1.7 relative to a standard

Kalman filter in a closed-loop BMI task requiring stable stops at targets. Further, SDKF offers

the first proof-of-concept of a control algorithm designed to outperform during online decoding

relative to a standard Kalman filter algorithm that offers superior performance during offline de-

coding. This demonstration highlights the fact that optimizing neural decoders offline cannot

always be expected to yield the best decoders for online BMI applications.

In Chapter 4, we leveraged the BMI system as a paradigm for basic scientific studies of

internal models for sensorimotor control. We began by providing evidence that internal models

are engaged by BMI control. In particular, we made two key observations. First, subjects’ neural

activity compensates for natural sensory feedback delays during BMI control, suggesting that

an internal model is used to predict the outcome of a movement before visual feedback of that

outcome becomes available. Second, when the BMI is perturbed by the experimenter, neural

activity is initially consistent with the pre-perturbation BMI, suggesting that an internal model

of that BMI persists in influencing neural commands.

With this evidence that internal models underlie BMI control, we continued in Chapter 4

with the development of a statistical framework for extracting a rich representation of an internal

model from simultaneously recorded neural population activity. By examining these extracted

internal models, we discovered that a mismatch between subjects’ internal models and the ac-

tual BMI explains roughly 65% of movement errors. We also showed that this internal model

mismatch limits subjects’ available dynamic range of movement speeds and may contribute to-

ward the difficulties in controlling BMI movement speed from Chapter 3. Further, we perturbed

the mapping from neural activity to BMI movements and found that extracted internal models

adapted in a manner consistent with the perturbation.
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Future directions

In Chapter 3 we proposed the SDKF decoding algorithm, which relies on the typically strong

directional signals in M1 to improve control of BMI speed. We evaluated SDKF in a center-

out task, which does not explicitly require curved movements. Future work will be required

to determine whether SDKF’s built-in tradeoff between speed and angular velocity will help or

hurt when generalizing to a task that encourages curved movements, such as a target-pursuit task

(O’Doherty et al., 2009; Flint et al., 2012), an obstacle-avoidance task (Gilja et al., 2012), or an

instructed-path task (Sadtler et al., 2015).

Our development of SDKF serves primarily as a proof-of-concept that speed control need

not rely solely on the extraction of speed-related activity in M1, and future design iterations

might further improve the performance of SDKF-based BMI systems. In particular, we chose

the speed-dampening parameters by hand using an ad-hoc method. An automatic calibration of

these parameters would enable clinical SDKF systems to operate with less reliance on a BMI

engineer and might result in more robust and higher performance systems. Additionally, the

speed-dampening concept could be combined with other recent advances in BMI decoder design

(e.g., Gilja et al. (2012); Orsborn et al. (2014)) toward a hybrid system that incorporates the

benefits of each approach. Finally, since BMI systems can be trivially designed to be slow

and accurate or fast and inaccurate, future systems and task-generalization experiments should

directly measure speed-accuracy tradeoffs. The ability to shift the speed-accuracy operating

point of a BMI in real time might enhance a user’s ability to use the same BMI across many tasks

and contexts.

In Chapter 4 we developed IME as a statistical framework for extracting the subject’s internal

model of the BMI. An intriguing question is whether higher-performance BMI systems might be

enabled by designing a BMI decoder based on knowledge of the subject’s internal model. One

possible design would be to simply set the BMI mapping to be the extracted internal model.

It is currently unclear what effect such a perturbation to the BMI mapping might have on the

adaptive processes in the motor system. Future studies could be directed toward resolving how

manipulations to the BMI mapping can be most synergistic with neural plasticity in the brain.

We focused on interpreting neural population through a static internal model extracted from

119



trials where BMI performance was proficient and stable. During these trials, the internal model

is relatively stable, compared to trials immediately following a perturbation, when the internal

model is likely undergoing substantial adaptation. Future studies could consider the identification

of a time-varying internal model during motor adaptation. Extracted internal models provide

a window into the subject’s sensory prediction errors (i.e., the difference between internally

predicted and actual movements), which are believed to drive motor adaptation. Corresponding

modifications of the subject’s internal model to the subject’s perceived sensory prediction errors

might reveal fine-timescale error-based adaptation mechanisms and limitations. Estimation of a

time-varying internal model could simply leverage the existing IME framework over a sliding

window of trials. However, methodological developments might be required to enable robust

estimation with limited trial counts. A more elegant solution might be to take advantage of

the time-series nature of the BMI data by incorporating an explicit trajectory model over internal

models. Further work along these lines could help to elucidate the neural mechanisms underlying

i) motor learning, and ii) the ability to rapidly switch between BMI mappings (Ganguly and

Carmena, 2009).

At a higher level, it will be important to address whether similar computational and scien-

tific principles can be applied toward studying internal models in other systems throughout the

brain. Although we studied internal models in the motor system, we did so using ideas that could

generalize to the sensory internal models that relate sensory stimuli to perception, and perhaps

even the internal models that drive cognitive decision making. In particular, we sought repre-

sentations of an internal model that could capture one’s prior beliefs about the world (i.e., how

the BMI system works) and relate those prior beliefs to task goals (i.e., drive the BMI cursor

to the target). To capture these prior beliefs, we identified task-related, predictive, statistical

regularities in the recorded population activity. In higher-order cognitive processes (e.g., verbal

communication), statistical regularities in the system’s input (e.g., word choices) likely arise due

to an internal model that captures one’s prior beliefs (e.g., about grammar, how meaning results

from combinations of words, how this meaning will be interpreted during conversation). Mov-

ing forward, we hope researchers will take the next step toward generalizing similar approaches

toward studying internal models and the prior beliefs they encode throughout the brain.
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Chapter 6

Appendix A. Collaborative work

While leading the research described in the previous chapters, I also contributed toward a study

led by Patrick Sadtler. In that work, brain-machine interfaces (BMIs) were used to test the hy-

pothesis that some patterns of neural activity may be easier to generate than others (Sadtler et al.,

2014). Rhesus monkeys were given BMI control of a 2D cursor via an intuitive BMI mapping

that was designed to be easy for the subjects to control. The subjects’ neural activity during this

intuitive control session was used to determine a low-dimensional subspace, or intrinsic mani-

fold, that best describes the observed patterns of neural activity. The primary result of the study

was that, on a timescale of hours, subjects could readily learn to control the BMI when the BMI

mapping aligned with the intrinsic manifold, but could not so easily learn when the BMI mapping

was misaligned to the intrinsic manifold. My contributions toward this work were i) building a

computational toolbox for designing and selecting hypothesis-based BMI mappings from neural

activity recorded during the intuitive control sessions, ii) discussing the experiments and analyses

throughout the project, and iii) revising the manuscript.
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